
Robot Localization Implemented

with Enzymatic Numerical P Systems

Ana Brânduşa Pavel, Cristian Ioan Vasile, and Ioan Dumitrache

Department of Automatic Control and Systems Engineering,
Politehnica University of Bucharest,

Splaiul Independenţei, Nr. 313, sector 6, 060042, Bucharest, Romania
{apavel,cvasile,idumitrache}@ics.pub.ro

Abstract. Membrane computing is an interdisciplinary research field fo-
cused on new computational models, also known as P systems, inspired
by the compartmental model of the cell and the membrane transport
mechanisms. Numerical P systems are a type of P systems introduced
by Gh. Păun in 2006 for possible applications in economics. Recently,
an extension of numerical P systems, enzymatic numerical P systems,
has been defined in the context of robot control. This paper presents a
new approach to modeling and implementing autonomous mobile robot
behaviors and proposes a new odometry module implemented with en-
zymatic numerical P systems for robot localization. The advantages of
modeling robot behaviors with enzymatic membrane controllers and the
experimental results obtained on real and simulated robots are also
discussed.

Keywords: robot, membrane controller, odometry, localization, enzy-
matic numerical P systems.

1 Introduction

Membrane computing is a new computational paradigm inspired by the trans-
port mechanisms of the cell’s membranes. The cell is delimited by a bio-membrane
and contains other compartments with specific functions (nucleus, mitochondria,
etc.) [5]. The tree-like structure of the cell’s membranes, which bound the com-
partments, and the trans-membrane transport mechanisms are the fundamental
features of the membrane systems. The computational model, introduced by Gh.
Păun, operates on symbols (symbolical P systems)[9,11] or variables (numerical P
systems) [10]. Each membrane of the P system contains either a list of symbols or
variables and a set of rules used for computation and inter-membrane communica-
tion. P systems are said to be naturally parallel and distributed systems because
of their structure and their computation mechanism.

Most of the research effort has been focused on symbolical P systems. Numer-
ical P systems (NPS) have been introduced in 2006 for possible applications in
economics [10]. An extension of the NPS model, enzymatic numerical P systems
(ENPS), has been proposed by the authors [7] in order to enhance the modeling

T.J. Prescott et al. (Eds.): Living Machines 2012, LNAI 7375, pp. 204–215, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Robot Localization Implemented with Enzymatic Numerical P Systems 205

power of NPS. In this paper, the ENPS model is used to implement an obstacle
avoidance and odometric localization modules for autonomous mobile robots.
The membrane system model for obstacle avoidance was proposed in [8] as an
application for ENPS. Both modules have been tested on real and simulated
robots and the experimental results are presented.

This paper presents a new way of modeling robot behavior using a biomimetic
computational paradigm inspired by the cell’s structure. To the authors’ knowl-
edge, this approach is new to the robotics field.

2 Formal Definition of the ENPS Model

2.1 NPS Model

A membrane system has a tree-like structure (figure 1) and computation takes
place in parallel in all its nodes (membranes). Each membrane of a numerical
P system has variables, which store information, and a set of rules (programs),
which are responsible for the computation and the transfer of information be-
tween the nodes. The rules’ action is inspired from chemical reactions which take
place within the cell. A rule consumes the variables that are involved in it and
produces a quantity that is distributed to other variables. The variables which
receive new values from the rule must be contained within the current, the par-
ent or a child membrane. This process is inspired by the membrane transport
mechanisms of the cell [1] and it is responsible for the communication between
the artificial membranes.

Fig. 1. Numerical P system with 4 membranes, M1, M2, M3, M4. Membrane M1 is
the skin membrane of the system and M3 and M4 are elementary membranes because
they don’t have children. Each membrane has a number of variables labeled with xij

and one or no rule (program Prij). The initial values of the variables are represented
between brackets.

The ENPS model is based on the NPS model which is formally defined as follows:

Π = (m,H, μ, (V ar1, P r1, V ar1(0)), . . . , (V arm, P rm, V arm(0))) (1)

206 A.B. Pavel, C.I. Vasile, and I. Dumitrache

where:

– m is the number of membranes used in the system, degree of Π ; m ≥ 1;
– H is an alphabet that contains m symbols (the labels of the membranes);

– μ is a membrane structure;
– V ari is the set of variables from compartment i, and the initial values for

these variables are V ari(0);
– Pri is the set of programs (rules) from compartment i. Programs process

variables and have two components, a production function and a repartition
protocol.
The j-th program has the following form:

Prj,i = (Fj,i(x1,i, ..., xki,i), cj,1|v1 + ...+ cj,ni |vni)

where:

• Fj,i(x1,i, ..., xki,i) is the production function;

• ki represents the number of variables in membrane i;
• cj,1|v1 + ...+ cj,ni |vni is the repartition protocol;
• ni represents the number of variables contained in membrane i, plus the
the number of variables contained in the parent membrane of i, plus the
number of variables contained in the children membranes of i.

The coefficients cj,1, . . . , cj,ni are natural numbers (they may be also 0, case
in which it is omitted to write “+0|x”) [10] which specify the proportion of
the current production distributed to each variable v1, ..., vni . Let us consider
the sum of these coefficients: Cj,i =

∑ni

n=1 cj,n. A program Prj,i is executed as
follows. At any time t, the function Fj,i(x1,i, ..., xki,i) is computed. The value q =
Fj,i(x1,i,...,xki,i

)

Cj,i
represents the “unitary portion” to be distributed to variables

v1, . . . , vni , according to coefficients cj,1, . . . , cj,ni in order to obtain the values
of these variables at time t + 1. Specifically, variable vs which belongs to the
repartition protocol of program j, will receive: q ∗ cj,i, 1 ≤ s ≤ ni.

If a variable belongs to membrane i, it can appear in the repartition protocol
of the parent membrane of i and also in the repartition protocol of the child
membranes of i. After applying all the rules, if a variable receives such “contri-
butions” from several neighboring compartments, then they are added in order
to produce the next value of the variable. A production function which belongs
to membrane i may depend only on some of the variables from membrane i.
Those variables which appear in the production function become 0 after the
execution of the program.

Deterministic NPS have only one rule per membrane (card(Pri) = 1) or
must have a selection mechanism that can decide which rule to apply. The NPS
model with multiple rules per membrane is a non-deterministic system. However,
by their structure, NPS are well suited for applications which involve numerical
variables and require a deterministic behavior, such as control systems for mobile
robots. Thus a selection mechanism for the active rules is defined in the ENPS
model [7].

Robot Localization Implemented with Enzymatic Numerical P Systems 207

2.2 ENPS Model

ENPS is defined as a NPS with special enzyme-like variables which control the
execution of the rules. Thus, an ENPS is defined as follows:

Π = (m,H, μ, (V ar1, E1, P r1, V ar1(0)), . . . , (V arm, P rm, Em, V arm(0))) (2)

where:

– Ei is a set of enzyme variables from compartment i, Ei ⊂ V ari
– Pri is the set of programs from compartment i. Programs have one of the

two following forms:
1. non-enzymatic form, which is exactly like the one from the standard

NPS: Prj,i = (Fj,i(x1,i, . . . , xki,i), cj,1|v1 + ...+ cj,ni |vni)
2. enzymatic form: Prj,i = (Fj,i(x1,i, . . . , xki,i), et,i, cj,1|v1 + ...+ cj,ni |vni),

where et,i ∈ Ei

The enzymatic mechanisms of the ENPS model is used for the selection of the
valid rules. The enzyme-like variables are inspired by biological enzymes, which
are molecules that control most of the biochemical process in living cells. By
catalyzing reactions, enzymes synchronize the steps of a biological process.

To understand how ENPS work, let us consider one membrane M1 with the
following variables: x11[3] , x21[2], e11[4] and one production function: 2 ∗ x11 +
x21(e11 →), where one may notice a specific variable attached, e11, which is the
enzyme (figure 2).

Fig. 2. Membrane with an enzyme variable

In this case the condition is e11 > min(x11/2, x21), but becausemin(x11, x21) >
min(x11/2, x21), the simplified and more general condition e11 > min(x11, x21)
ensures that the amount of enzyme is more than enough and that the reaction can
take place. Thus, a rule is active if the associated enzyme variable has a greater
value than the minimum of the variables involved in the production function. Be-
cause the values of the variables can be sometimes negative, in some applications
it is more convenient to test if the value of the enzyme is greater than the absolute
value of one of the variables contained in the production function. For example,
the rule Pr1,1 in membraneM1 (figure 2) is active if e11 > min(|x11|, |x21|). This
last condition is used in this paper. There can be more than one active rule in a
membrane or none. In a computational step, all active rules in all membranes are
executed in parallel. The universality of the NPS andENPS computationalmodels
is proven in [10] and [14].

208 A.B. Pavel, C.I. Vasile, and I. Dumitrache

3 ENPS Controllers

Membrane controllers can be used to control autonomous mobile robots and to
generate various desired behaviors and cognitive abilities, like obstacle avoidance,
localization, moving to a given position, wall following, following another robot,
etc. The major advantage of using NPS as a modeling tool is that P systems
are naturally parallel and distributed systems. Membranes of a NPS can be
distributed over a grid or over a network of microcontrollers in a robot. The
computation done in each membrane region (the execution of a membranes rules)
can also be done in parallel [3].

Another important property is that membranes can only communicate with
their parents and their children membranes. Thus, communication in distributed
P systems can be implemented efficiently.

Furthermore, membrane controllers can be integrated easily in the control
program of the robotic system. Membrane systems can be added or changed
to embed the desired functionality without changing the code of the control
program. The membrane system definition can be stored in separate files (for
example in xml format) and loaded as needed. A simulator for ENPS systems
is necessary to execute the membrane systems. The simulator can, however, be
optimized for the platform it runs on, taking advantage of the underlying hard-
ware, microcontroller/procesor/DPS, memory architecture and communication
technology (TCP/IP, I2C, TWI, Bluetooth, etc.). For instance, a parallelized
GPU-based simulator for ENPS was recently proposed in [4].

A robot controller which uses two modules, obstacle avoidance and localiza-
tion, is presented in Pseudocode 3. In each loop of the controller, the sensors are
read (infrared and motor encoders), then the position of the robot is updated
based on the previous position and on the values of the encoders. The proximity
sensors are used to compute the motors’ speeds such that obstacles are avoided.
Finally, the motors’ speeds are sent to the robot.

while(True) {

read_sensors()

position = odometry(position, encoders)

motors_speeds = avoid(proximity_sensors)

set(motors_speeds)

}

This paper proposes a new ENPS module for odometric localization which
was implemented and tested on simulated e-puck and KheperaIII robots and
on real e-puck robots. Experimental results obtained so far for an autonomous
robot with both obstacle avoidance behavior and localization ability will further
be presented. The ENPS model for obstacle avoidance is detailed in [8].

Robot Localization Implemented with Enzymatic Numerical P Systems 209

4 Odometric Localization for an Autonomous Mobile
Robot

An autonomous mobile robot should be able to know its position at any time.
Localization is one of the most important and difficult problems in autonomous
mobile robotics. Different localization systems used to determine the position
of an autonomous robot at any time are presented in [12,13]. Localization can
be implemented in many ways, using different devices like: the encoders of the
motors, accelerometers, beacons, GPS [13].

An ENPS model which implements odometric localization for an autonomous
mobile robot, using the information received from the motors’ encoders, is pro-
posed. The ENPS for odometric localization has been designed as a membrane
system with 5 membranes (figure 3). The enzyme-like variables have an essential
role in the control of the program flow, synchronization and parallel computa-
tion. As the robot must know its position at any time, the module receives in
the begining of each cycle of the controller the following input information: the
initial position of the robot (xi, yi, θi), where xi, yi, represent the coordinates
in reference coordinate system and θi is the angle made by the direction of the
robot and the x axis counterclockwise (the orientation of the robot). Also, the
distances traveled by each wheel are input values: dL for the left wheel and dR
for right wheel. The output of the module is the updated position of the robot:
(xf , yf , θf) in the same coordinate system. The trajectory of the robot on a short
distance can be approximated with a circular arc. Each wheel travels a distance
which is given by its encoder. The encoder returns the number of steps which
can be converted into a distance. Thus, the following position update formulas
are obtained for a differential wheeled robot [13]:

Δθ =
dR − dL

wheelDist

Δs =
dR + dL

2

Δx = Δs · cos(θ + Δθ

2
)

Δy = Δs · sin(θ + Δθ

2
)

The updated position of the robot, (xf , yf , θf), is computed in the following way:

xf = xi +Δx yf = yi +Δy θf = θi +Δθ

The position of the robot is measured in the point situated in the middle of the
segment which joins the two wheels. The distance between the two wheels of the
robot is a fixed parameter that depends on the type of robot and is passed to
the membrane system via the b variable in membrane Odometry (figure 3).

The membranes Cosine and Sine approximate the values of sine and cosine
using their power series:

sin(x) =

∞∑

n=0

(−1)n · x2n+1

(2n+ 1)!
cos(x) =

∞∑

n=0

(−1)n · x2n

(2n)!

210 A.B. Pavel, C.I. Vasile, and I. Dumitrache

Fig. 3. Enzymatic membrane system for odometric localization

The general term of the power series is computed recursively, in rule Pr1,3 for
Cosine and in rule Pr1,5 for Sine, and added to the final value, variable cos from
membrane ComputeX and sin from ComputeY. After a number of steps, both
Cosine and Sine finish their computations. The two membranes are executed in
a number of steps which depends on the input value, θc for Cosine and θs for
Sine, and the error, Erc, respectively Ers. When the general term of the series
becomes less than the given error parameter, the computation stops.

In ComputeX, the value of Δx is computed by the production function Pr4,2
which is activated by Ehx. The final value of x is computed by summing Δx,
received from membrane ComputeX, with the initial value, xi. Similarly, the
value of y is computed. Then the values of EHx and EHy are transferred to
EH (EH ← 1.1 · EHx; EH ← 1.1 · EHy). The factor 1.1 has been chosen in
such a way that, when both membranes ComputeX and ComputeY finish their
computations, the enzyme EH from the membrane Odometry have a greater
value than the variable ED from the same membrane. EH enzyme from the skin
membrane sums the values of EHx from ComputeX and EHy from ComputeY.
If both membranes finished their computations, EH has a value close to 2.2 ·
smax, while ED is 2 · smax. It is important to note that in general membranes
ComputeX and ComputeY do not finish at the same time. When EH becomes
greater than ED, the rule Pr6,1 from the membrane Odometry is executed,
therefore varible ET receives a positive value which generates the termination
of the programwhich returns the current position of the robot, stored in variables
x, y and θ.

The two membranes, ComputeX and ComputeY, are synchronized in the skin
membrane, Odometry, by the enzymatic mechanism. If only one of the two mem-
branes finished the computation, then ED = 2 · smax > EH = 1.1 · smax, so
the rule Pr6,1 is not active yet. It is activated only when both membranes have
finished their computations and ED = 2 · smax < EH = 2.2 · smax.

Robot Localization Implemented with Enzymatic Numerical P Systems 211

The odometric localization implemented with ENPS is a parallel computa-
tion structure. The enzymatic mechanism enhances the computation power of
the membrane system and also allows the control of the program flow and syn-
chronization between the parallel computations.

5 Advantages of ENPS Model

Both NPS and ENPS models can be used for modeling autonomous mobile robot
behaviors. The numerical nature, the distributed and parallel structure and the
computing power, make membrane controllers suitable candidates for robotic
control systems.

ENPS controllers have a less complex structure than NPS controllers. De-
signing a classical NPS controller is difficult and requires a lot of tricky design
mechanisms. If the order of the generated values is changed, the system would
not work. By using enzyme-like variables, the model of the controller is clearly
simplified, easier to implement and more efficient than the one modeled with
classical NPS. Enzyme variables control the program flow. Therefore, they can
be used for conditional trans-membrane transport, as stop conditions and syn-
chronization mechanism. In ENPS, if the result is generated, the computational
process stops due to the stop conditions implemented by the enzymatic mecha-
nism, while in NPS all the membranes have to finish all their computations in
a given number of steps. The design of an ENPS controller requires less effort
and the performance of the controller is increased by reducing the computa-
tional procedure. Enzyme variables can also filter the noise from the sensors. In
the ENPS controller for obstacle avoidance [8], the values lower (greater, after
rescaling) than a given number are ignored because they are not considered to
indicate a real obstacle detection.

The membrane representation is an advantage for both NPS and ENPS be-
cause membrane structures are very efficient for designing and modeling robotic
behaviors in a parallel and distributed manner. The controllers are designed in-
dependent of how the membrane system is distributed and executed in parallel.
Only the simulator for ENPS structures is responsible for the parallel and dis-
tributed execution of the membranes. The enzymatic mechanism provides stop
conditions, rules selection conditions, and synchronization between the compu-
tations performed in different membranes.

6 Experiments and Results

A Java simulator, SimP, which computes ENPS and NPS structures has been
implemented in order to test the membrane controller models on robots [6]. Other
simulators which can be used to execute ENPS models are SNUPS, which is free
and has a graphical user interface [2], and the parallelized GPU-based ENPS
simulator proposed in [4]. ENPS is an extension of NPS, thus the simulators can
execute NPS structures as well. The membrane controllers are stored in xml files
which are parsed by SimP simulator. Different behaviors can be stored in xml

212 A.B. Pavel, C.I. Vasile, and I. Dumitrache

format which is a uniform representation. XML representation does not depend
on the implementation of the simulator or of the robotic system which integrates
the controllers. Thus, implementation changes in the membrane simulator or
in the robotic system do not interfere with the membranes. If the membrane
simulator is optimized, the performance of all membrane controllers increases.

A framework has been developed in order to test the ENPS modules on real
and simulated robots. The framework transfers the information received from the
sensors (infrared, motors’ encoders) to the membrane controllers. The membrane
structures are then simulated with SimP and return the output information
(motors’ speeds, robot position and orientation) to Webots robotics simulator.
Using Webots to route the control program on real robots, the behaviors have
been tested on real robots as well.

(a) Arena

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

X

Y

Odometry
Real
Arena Bounds

(b) Odometry - real trajectory and com-
puted trajectory

Fig. 4. Execution time of the controllers’ cycle in simulated experiments

The ENPS modules have been successfully tested on both simulated Khep-
eraIII and e-puck robots and on real e-puck robots. Multiple tests have been
performed with one robot and more robots in an arena with obstacles. An ex-
ample of a simulated experiment is shown in figure 4(a). In all experiments, the
robots avoided all the obstacles in the arena, updating their position.

In figure 5, the maximum value read by the sensors (Smax = max(S1, . . . , S8))
and the speeds of the two wheels are displayed for each cycle (a cycle corresponds
to one loop of the controller presented in Pseudocode 3). The peaks in the
graph of maximum sensors’ value (top plot of figure 5) represent detected objects
and generate the corresponding spikes in the two graphs of the motors’ speeds
because the robot has to turn in order to avoid the obstacle. Other interesting
features in the maximum sensors’ graph are regions of non-zero, near constant
values which correspond to the case when the robot passes through a narrow
corridor. One such example can be noticed around the 10000 cycle. In this case,
the speeds of the motors do not present spikes and are close to the value of
the cruise speed which is 200. Therefore, the controller is able to stabilize the
trajectory of the robot while passing through tunnels. The mean absolute values
of the two speeds are very close to the cruising speed as shown table 1.

Robot Localization Implemented with Enzymatic Numerical P Systems 213

2000 4000 6000 8000 10000
0

2000

4000

M
ax

im
um

se
ns

or
s‘

 v
al

ue
Cycle number

2000 4000 6000 8000 10000
−1000

0

1000

W
he

el
 s

pe
ed

Le
ft

Cycle number

2000 4000 6000 8000 10000
−1000

0

1000

W
he

el
 s

pe
ed

R
ig

ht

Cycle number

Fig. 5. Maximum sensors’ value and motors’ speeds in each cycle

Figure 4(b) illustrates the real trajectory of the robot obtained from Webots
simulator and the one computed using the odometry module in an experiment
done in the arena shown in figure 4(a). In order to prove that the odometry
localization module implemented with ENPS returns good estimates of the po-
sition, the values computed by the membrane module have been compared to
the values returned by the Webots simulator. The positioning error is low at the
beginning of the experiment, but increases in time due to numerical and approx-
imation errors and wheel slippage. As shown in figure 4(b), the two trajectories
(real and computed) of the robot are similar, but the computed one is shifted
to the left. The robot has traveled a total time of 362 seconds and a distance
of 8.9849 meters as shown in table 1. The positioning error at the end of the
experiment is 0.4943 meters.

The execution time of both modules (avoid and odometry) is very low com-
pared to the cycle time of the robot controller. The cycle time is defined as the
duration of a loop (Pseudocode 3) which is about 32 ms in Webots simulator
for KheperaIII and e-puck robots and about 180 ms for real e-puck robots. The
cycle time in the real experiments is greater because it includes the bluetooth
communication. In figure 6 the execution time of both membrane modules for
each robot controller cycle is represented. For obstacle avoidance the mean exe-
cution time is 0.1884 ms and for the odometric localization, the mean execution
time is 0.4719 ms (table 1). The designed membrane controllers can be used with
other differential wheeled robots as well, by changing the weights of the sensors
for obstacle avoidance and the distance between the wheels for the odometric
localization module. The weights used in the avoid procedure depend on the type
of sensors and on their placement around the robot. Thus, membrane controllers
can be successfully used in autonomous mobile robot applications.

214 A.B. Pavel, C.I. Vasile, and I. Dumitrache

Table 1. Summary of results from experiments with simulated

Avoid (9 membranes)

Execution time

mean 0.1884 ms
stddev 0.1441 ms
max 5.5870 ms
min 0.1460 ms

Smax

mean 316.7189
stddev 485.7635
max 3647.0

Speed left
mean 213.9461
stddev 144.3022

Speed right
mean 206.8451
stddev 144.3022

Odometry (5 membranes) Execution time

mean 0.4719 ms
stddev 0.2351 ms
max 7.7400 ms
min 0.2830 ms

Total distance traveled 8.9849 m

Total time traveled 362 s

Final positioning error 0.4943 m

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

1

2

3

4

5

6

Cycle number

E
xe

cu
tio

n
tim

e
of

th

e
m

em
br

an
e

sy
st

em
 (

m
s)

Obstacle avoidance

(a) Obstacle avoidance

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

1

2

3

4

5

6

Cycle number

E
xe

cu
tio

n
tim

e
of

th

e
m

em
br

an
e

sy
st

em
 (

m
s)

Odometric localization

(b) Odometric localization

Fig. 6. Execution time of the controllers’ cycle in simulated experiments

7 Conclusions and Future Work

Two ENPS modules for obstacle avoidance and odometric localization have been
designed and tested on real and simulated robots. By using a suitable simulator
for ENPS, the membrane systems are distributed over computational nodes (like
microcontrollers in a robot) in a transparent way. The programmer does not have
to worry about communication and synchronization issues or how to distribute
the system.

Future work include further testing of the proposed ENPS controllers inte-
grated in the local agent of a cognitive multi-robot architecture. Other robot
behaviors will also be modeled with ENPS and tested on autonomous robots.
It is a research goal of the authors to develop different components of a robotic
system: localization, navigation, planning, etc as membrane systems which will
run on a virtual machine distributed over networked microcontrollers. The vir-
tual machine will run the membranes (the code) in a distributed and parallel
way, transparently from the user in a similar way as Java and Python. It is a
current effort to also develop standard libraries that provide basic and often used
functionalities, such as a math library (for sine, cosine, etc.). In this regard, the

Robot Localization Implemented with Enzymatic Numerical P Systems 215

long term objective is to create a controller programming environment that is
completely distributed and parallel.

References

1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular
Biology of the Cell, 4th edn. Garland Science, NY (2002)

2. Arsene, O., Buiu, C., Popescu, N.: Snups – a simulator for numerical membrane
computing. Intern. J. of Innovative Computing, Information and Control 7(6),
3509–3522 (2011)

3. Buiu, C., Vasile, C.I., Arsene, O.: Development of membrane controllers for mobile
robots. Information Sciences 187, 33–51 (2012)

4. Garc̀ıa-Quismondo, M., Pèrez-Jimènez, M.J.: Implementing enps by means of gpus
for ai applictions. In: Proceedings of Beyond AI: Interdisciplinary Aspects of Arti-
ficial Intelligence (BAI 2011), Pilsen, Czech Republic, pp. 27–33 (December 2011)

5. Lodish, H., Berk, A., Kaiser, C.A., Krieger, M., Scott, M.P., Bretscher, A., Ploegh,
H., Matsudaira, P.: Molecular Cell Biology (Lodish, Molecular Cell Biology), 6th
edn. W.H. Freeman (June 2007)

6. Pavel, A.B.: Membrane controllers for cognitive robots. Master thesis, Depart-
ment of Automatic Control and Systems Engineering, Politehnica University of
Bucharest (February 2011)

7. Pavel, A.B., Arsene, O., Buiu, C.: Enzymatic Numerical P Systems - A New Class
of Membrane Computing Systems. In: The IEEE 5th International Conference on
Bio-Inspired Computing: Theory and Applications, Liverpool, UK (2010)

8. Pavel, A.B., Buiu, C.: Using enzymatic numerical P systems for modeling mobile
robot controllers. Natural Computing (in press), doi: 101007/s11047-011-9286-5

9. Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)
10. Păun, G., Păun, R.: Membrane computing and economics: Numerical p systems.

Fundamenta Informaticae 73, 213–227 (2006),
http://portal.acm.org/citation.cfm?id=1231159.1231179

11. Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-
puting. Oxford University Press, Inc., New York (2010)

12. Siciliano, B., Khatib, O. (eds.): Springer Handbook of Robotics. Springer (2008)
13. Siegwart, R., Nourbakhsh, I.R.: Introduction to Autonomous Mobile Robots. Brad-

ford Company, Scituate (2004)
14. Vasile, C.I., Pavel, A.B., Dumitrache, I., Păun, G.: On the Power of Enzymatic

Numerical P Systems (submitted)

http://portal.acm.org/citation.cfm?id=1231159.1231179

	Robot localization with enzymatic numerical P systems
	Introduction
	Formal Definition of the ENPS Model
	NPS Model
	ENPS Model

	ENPS Controllers
	Odometric Localization for an Autonomous Mobile Robot
	Advantages of ENPS Model
	Experiments and Results
	Conclusions and Future Work

