
Utilizing Signal Temporal Logic to Characterize and
Compose Modules in Synthetic Biology

Curtis Madsen1, Prashant Vaidyanathan1, Cristian-Ioan Vasile2, Rachael Ivison3, Junmin Wang3,
Calin Belta2,3, and Douglas Densmore1,4

1Department of Electrical & Computer Engineering, Boston University, Boston, MA
2Division of Systems Engineering, Boston University, Boston, MA

3Graduate Program in Bioinformatics, Boston University, Boston, MA
4Biological Design Center, Boston University, Boston, MA

{ckmadsen,prash,cvasile,rivison,dawang,cbelta,dougd}@bu.edu

1. INTRODUCTION
The goal of synthetic biology is to allow biologists and

engineers to design and build new biological systems. One
way this task is achieved is though the composition of DNA
segments representing genetic parts and modules. In syn-
thetic biology, parts represent promoters, ribosome binding
sites, genes, terminators, etc. while modules are comprised
of these parts and include gates, switches, and oscillators.
Each of these constructs has a function which can be speci-
fied in a formal way using a language such as the hardware
description language Verilog. It has been shown that it is
possible to reliably synthesize genetic circuits specified in
this language using well established methods from logic syn-
thesis in digital electronics [4].

Although previous approaches are very good at predicting
the behavior of a designed circuit, they are Boolean in na-
ture and do not include information about the performance
of a design. Genetic circuit designs often contain real-time
and real-valued constraints that can affect the dynamics of
the system with varying levels of magnitude. To improve
on previous approaches and include performance metrics in
design specifications, temporal logics such as signal temporal
logic (STL) [3] can be used. STL adds the ability to create
specifications that include parameters intrinsic to genetic
components, interactions with complex environments and
other components, and timing of interactions and events.

For example, the genetic toggle switch shown in Figure 1(a)
can be described by the STL formula in Figure 1(b). This
STL formula states that the toggle switch starts in a state
where both TetR and aTc are above a value of 30 for 200
time units. Within 200 time units, TetR falls below 30 and
stays in that state for 200 time units. At this point, IPTG is
added to the system and is held at a value above 30 for 200
time units. TetR is then expected to rise above 30 within
400 time units following the introduction of IPTG.

In the work presented here, we utilize an extension to STL
called STL[that includes syntax and semantics for compo-
sition of genetic components [6]. Using temporal logic infer-
ence (TLI) [2], we can use experimental data to characterize
genetic modules with STL[specifications. Our method can
then build a design space tree by trying different composi-
tions of the characterized modules. To improve efficiency,
the design space tree is automatically pruned using biologi-
cal constraints for assembly rules and failure mode checks.

(a)

[G[0,200)(aTc > 30 ∧ TetR > 30)] ∧ [F[0,200)G[0,200)(TetR ≤ 30)]∧
[G[400,600)(IPTG > 30)] ∧ [F[400,800)(TetR > 30)]

(b)

Figure 1: The genetic toggle switch. (a) A physical realiza-
tion of the genetic toggle switch. (b) An STL specification
for the genetic toggle switch.

2. WORKFLOW
Given a library of modules and some experimental data,

the methodology presented here can be used to characterize
the modules with STL[specifications. These modules can be
composed using a tree-based search and prune design space
exploration technique to produce a genetic circuit that im-
plements a desired performance specification given in STL.

2.1 Characterization of Modules
Our method uses experimental characterization data along

with the structural specification of the genetic module to
construct a mathematical model representing its function.
This mathematical model is simulated to produce traces rep-
resenting possible behaviors of the system. These traces are
passed through TLI to produce an STL[specification that
captures the behavior of the module. However, TLI requires
not only a set of traces for the desired behavior of a sys-
tem but also requires a set of undesirable or unachievable
traces. To address this problem, we have devised an au-
tomated method that is capable of producing this set by
perturbing the set of traces produced during simulation.

For example, consider the repressilator module shown in
Figure 2(a). Using experimental data, a mathematical model
for this module can be constructed and simulated result-
ing in the simulation traces shown in Figure 2(b). This
plot shows how LacI, TetR, and λCI oscillate due to the re-
pression ring relationship they have with each other. Using
TLI, the SLT[specification for the repressilator shown in

(a)

(b)

[G[0,400)F[0,900)(LacI > 15)] ∧ [G[0,1200)F[0,900)(LacI ≤ 15)]∧
[¬G[0,400)F[0,700)(LacI > 15)] ∧ [¬G[0,1200)F[0,700)(LacI ≤ 15)]∧
[G[0,400)F[0,900)(TetR > 15)] ∧ [G[0,1200)F[0,900)(TetR ≤ 15)]∧
[¬G[0,400)F[0,700)(TetR > 15)] ∧ [¬G[0,1200)F[0,700)(TetR ≤ 15)]∧
[G[0,400)F[0,900)(λCI > 15)] ∧ [G[0,1200)F[0,900)(λCI ≤ 15)]∧
[¬G[0,400)F[0,700)(λCI > 15)] ∧ [¬G[0,1200)F[0,700)(λCI ≤ 15)]

(c)

Figure 2: A diagram showing the steps involved in charac-
terizing a module for the repressilator. (a) A genetic module
representing the physical realization of the repressilator. (b)
Time series data for the repressilator showing oscillations in
the three signals. (c) The STL[specification resulting from
applying TLI to the data in (b).

Figure 2(c) is generated. This specification can be read as:
each signal (LacI, TetR, and λCI) will always eventually rise
above a value of 15 within 800 time units and will always
eventually fall below a value of 15 within 800 time units.

2.2 Design Space Exploration
The genetic modules in our library can easily be composed

using the STL[specifications obtained from our characteri-
zation method. However, genetic modules may not behave
as expected due to physical properties of genetic systems
being hard to quantify [5]. Genetic components can also fail
due to unanticipated nonmodularity that arises when genetic
components are used in new genetic and environmental con-
texts [1]. To help catalog these scenarios, we have developed
grammars for known failure modes, and after each iteration
of testing assigned modules in vivo, the results of both suc-
cessful and unsuccessful tests are used to fine-tune a set of
rules we use to prune out undesirable or impossible combi-
nations of modules. To name a few pruning rules, our gram-
mars are able to eliminate module combinations that in-
troduce cross-talk, that introduce secondary structures, and
that are prone to undesirable homologous recombinations.
They additionally consider different ways that modules can
be combined and how these different combinations can lead
to failure modes such as terminators on one strand of DNA
affecting transcription on the other strand.

Figure 3 shows an example of a possible design space tree
generated from a set of three modules. In this example,
including m1 and m2 in the same design would lead to cross-
talk as they both produce the same protein. Branches in

Figure 3: An example of a design space tree that could be
generated from a library of three modules and their char-
acterizations (m1, φ1 through m3, φ3). In this example, m1

and m2 produce the same protein, and therefore, they can-
not be composed together in the same design due to prob-
lems with cross-talk. As such, branches that would contain
both m1 and m2 are pruned indicated by the red X’s on the
design space tree.

the design space tree that include both of these modules are
pruned and no more exploration is done on these paths. In
the worst case, the pruning algorithm is unable to remove
any branches; however, in this example, it is able to cut the
design space in half by reducing a 15 node tree to 8 nodes.

3. DISCUSSION
The workflow presented here can be used to: 1) charac-

terize genetic modules with STL[specifications, and 2) effi-
ciently explore the design space of an STL specification given
a library of characterized modules. Once a set of designs are
found, they can be compared against a desired specification
using the distance metric found in [6], and the best design
can be synthesized in the wet-lab. With this methodology,
synthetic biologists will be able to convert physical modules
that are currently being stored in a fridge in their labora-
tory into STL specifications. They will then be able to use
these modules to automatically explore the design space of
and construct more complex genetic circuit designs.

4. ACKNOWLEDGEMENTS
This work has been funded by the Office of Naval Re-

search under Grant Nos. N00014-11-1-0725 and 014-001-
0303-5 and the National Science Foundation under grant
CPS Frontier 1446607.

5. REFERENCES
[1] J. A. Brophy et al. Principles of genetic circuit design.

Nature methods, 11(5):508–520, 2014.

[2] Z. Kong et al. Temporal logic inference for classification
and prediction from data. In Proceedings of the 17th
International Conference on Hybrid Systems:
Computation and Control, pages 273–282, 2014.

[3] O. Maler et al. Monitoring temporal properties of
continuous signals. In Formal Techniques, Modelling
and Analysis of Timed and Fault-Tolerant Systems,
pages 152–166. Springer, 2004.

[4] A. A. Nielsen et al. Genetic circuit design automation.
Science, 352(6281):aac7341, 2016.

[5] P. Vaidyanathan et al. A framework for genetic logic
synthesis. Proceedings of the IEEE, 103(11):2196–2207,
2015.

[6] C.-I. Vasile et al. Compositional signal temporal logic
with applications to synthetic biology. In IEEE
Conference on Decision and Control (CDC), 2016
(Submitted).

