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Abstract

The main contribution of this paper is the introduction of the new concept of
membrane controller based on the structure and functioning of a determinis-
tic numerical P system. The procedure for developing a membrane controller
and for using it to control a mobile robot is explained and several test cases
are given in which membrane controllers are used to control both simulated
and real mobile robots and to generate various desired behaviours (obstacle
avoidance, wall following, and follow the leader). The experiments reported
in this paper validate the concept and prove that the performance of a mem-
brane controller is comparable to or better than that of other controllers
(such as fuzzy logic controllers).
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1. From biomembranes to membrane computing

Living cells are admirable examples of functional complexity and robust-
ness. Cells can grow, reproduce, respond to stimuli, process information,
and carry out an amazing array of chemical reactions, and all these abilities
define life [7]. A cell is a wonderful and complex biochemical machine. The
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architecture of a cell is now better understood and the important role of the
biomembranes as separators and filters is acknowledged.

Bioinspired computing is that branch of information sciences aiming at
developing new problem solving techniques and computing models based
upon the structure and functioning of living systems. Major paradigms in
bioinspired or natural computing are neural networks, evolutionary comput-
ing, swarm intelligence, DNA computing, among others. Membrane systems
(or P systems as they are generically known) represent an important re-
search direction in bioinspired computing and was initiated a decade ago by
Gheorghe Paun [8].

A P system (PS) is a computational model based upon the structure of
an eukaryotic cell and it mimicks the interaction and evolution of chemicals
inside of biomembranes [12]. The architecture (or membrane structure) of
a PS is a hierarchical arrangement of membranes, in which the outermost
membrane is called the skin membrane and separates the system from its
environment. This skin membrane is analogous to the plasma membrane
of a living cell. The membranes define regions as the biomembranes define
working compartments. A membrane is called elementary if it has no other
membrane inside. For a sample membrane structure, refer to Fig. 1.

Figure 1: A typical membrane structure of a P system

In every region there is a multiset of objects (abstract counterparts of real
chemicals, such as ions, proteins, etc.) and a set of evolution rules (abstract
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chemical reactions), see Fig. 2. A typical evolution rule for a region r of a
PS is of the form a → binjdoutdhere [11]. This rule reads as follows: a copy
of object a will be replaced by a copy of object b and two copies of object
d. More, the rule specifies the destination of the products: the copy of b will
enter the inner membrane labeled by j (binj), a copy of d will pass through
the current membrane and enter the outside region (dout), and a copy of
d will remain in region r (dhere). This rule can be applied if the current
region r includes a membrane (region) j. So, there are three basic operating
ways for a rule: 1. here rule: the output objects are passed into the current
membrane (region); 2. in rule: the outputs will be passed to one or more
children membranes; 3. out rule: the outputs will be passed to an upper
membrane in the hierarchy or to a sibling membrane.

The evolution rules are typically applied in a non-deterministic way and in
a maximally parallel way: the order of rule application is chosen at random,
and respectively, all possible rule assignments must take place during every
step of the computation. As an example, the P system from Fig. 2 which
is generating the Fibonacci numbers is iterated for a few steps. Membrane
0 is the output membrane and has no evolution rules inside. The result is
represented by the number of copies of the object e in the output membrane.

Figure 2: A P system for generating Fibonacci numbers

Membrane systems are synchronous and a computation proceeds from an
initial state (initial chemicals existing in one of the membranes) to an end
state (when no rule can be applied anymore) through a number of discrete
steps or transitions between configurations of the system. A configuration is
halting if no rule is applicable in any region, and a computation is halting if
it reaches a halting configuration. The result of a (halting) computation is
the number of objects sent to the environment (through the skin membrane)
during the computation [8].

An important number of computation mechanisms and classes of PS are
discussed in the literature (membrane charge, tissue P systems, symport
and antiport-based communication through membranes, catalytic objects,
division of membranes, membrane algorithms, etc.). More details are given
in [9], and a recent and comprehensive overview of the field is [13]. An
updated bibliography, list of simulators and open problems in PSs research
can all be found at the web address http://ppage.psystems.eu.
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Current applications of PS cover a wide range: modeling of biological
and biochemical processes, linguistics, cryptography, economics, optimiza-
tion, modeling intercellular communication mechanisms, interspecies dynam-
ics in ecological systems, etc. [13, 16]. Applications in process control are
begining to emerge, see for example [5] where a membrane systems-based
control strategy is used for designing stable controllers for unstable varying
plants.

There are many theoretical results related to the computational power
and complexity of PS [13]. For example, it has been proven that determin-
istic PSs can be simulated on a Turing machine in a polynomial time and
variants of PSs have been shown to be able to solve NP complete problems
in polynomial time [11].

Numerical PSs have been introduced in 2006 as possible models of eco-
nomic and business processes and despite powerful mathematical results con-
cerning this class of PSs, no concrete applications have been proposed. For
this reason, in [13, chap. 23.8], they are considered an “exotic“ subclass of
PSs. As its main contribution, this paper will introduce the new concept of
membrane controllers based on using numerical PSs and demonstrate the use
of such controllers for controlling a mobile robot. Next section will present
the fundamentals of numerical PSs, while section 3 will present the idea of
using membrane systems as computational blocks of cognitive architectures.
Section 4 will present the structure of the proposed membrane controllers for
three desired robot behaviours. Section 5 will give the experimental results
obtained both in simulation and on real robots. Performance indices will be
defined and analyzed for each membrane controller. The performance of the
proposed membrane controller will be compared to that of a Mamdani fuzzy
controller. Section 6 will conclude the paper with discussions and directions
for further improvements.

2. Numerical P systems

The focus of this paper is on numerical P systems (NPS), which will
be described in the following. They have been introduced in [10] with an
inspiration from economic and business processes. The architecture of an
NPS is identical to the architecture of a symbolic P system described above
(see Fig. 1), but in this case there are numerical values (variables) instead of
symbols and each membrane usually has a program consisting of a production
function and a repartition protocol, see Fig. 3.
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Figure 3: A simple numerical P system

The local variables have initial values (integer or real numbers). A pro-
duction function takes the local variables and computes a number. This
number will be distributed among the variables within various membranes
based on the repartition protocol. During each computation step every re-
gion’s production function is executed in parallel with the other ones. The
production function is a polynomial function that uses integer/real coeffi-
cients. In case of multiple programs in a membrane, there are two possible
ways to run the system: 1. to randomly select one program and execute it
or 2. to control the execution by using special variables which play the role
of biological enzymes (this enzymatic variant keeps the system deterministic
and is described with much details in [14]).

The repartition protocol takes the form: c1|v1+c2|v2+ ...ci|vi+ ...+cn|vn,
in which ci are natural numbers and specify the proportion of the current
production distributed to each variable vi. More concrete, there is a unitary
portion, q, distributed to variables vi and which is calculated as the value
of production function value at the current time divided by the sum of ci
coefficients from each repartition protocol. Then, a variable vi from the
distribution list will receive the value q ∗ ci. In case of a variable which gets
more than one contribution from several membranes, they are added in order
to produce the next value.

A variable xij is ’productive’ if it does appear in a production function,
then is ’consumed’ and reset to zero, otherwise the initial value is added to
the received contributions. The values of the variables at next time step
are computed by using repartition protocols, and so, portions distributed to
variables are added to form the new value.

For exemplification, one may consider a simple NPS structure as in Fig. 3
where there are two membranes with two variables each. One may note that
x22 is not productive as it does not appear in any of the two production
functions and so it will be not reset to zero at each computation step. In
square brackets are given the initial values for all four variables of interest:

• Membrane 1:

– variables: x11 has an initial value of 1, x12 has an initial value of
2;
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– production function: F1 = 4 ∗ x11 + x12;

– repartition protocol: x11 receives 1 (c11 = 1), x12 receives 1 (c12 =
1), x22 receives 1 (c13 = 1).

• Membrane 2:

– variables: x21 has an initial value of 3, x22 has an initial value of
1;

– production function: F2 = 3 ∗ x21 − 3;

– repartition protocol: x11 receives 1 (c21 = 1), x22 receives 1 (c22 =
1), x21 receives 1 (c23 = 1).

Let’s suppose the entire evolution cycle of the NPS from Fig. 3 has 4
steps, of which the first two are detailed below.

• Step 1:

– Membrane 1:

∗ x11 = 1, x12 = 2;

∗ compute production function’s value, F1 = 4 ∗ x11 + x12 ⇒
F1 = 6;

∗ compute ’unitary portion’ q1 = F1/(c11 + c12 + c13) to be
distributed to variables x11, x12 and x22 ⇒ q1 = 2

– Membrane 2:

∗ x21 = 3, x22 = 1;

∗ compute production function’s value, F2 = 3∗x21−3⇒ F2 =
6;

∗ compute ’unitary portion’ q2 = F2/(c21 + c22 + c23) to be
distributed to variables x11, x21 and x22 ⇒ q2 = 2;

– Compute the new variables’ values for Membrane 1 and Membrane
2 - cycle 1:

∗ x11 appears in both repartition protocols and is productive,
so: x11 = c11 ∗ q1 + c21 ∗ q2 = 2 + 2⇒ x11 = 4;

∗ x12 appears in the repartition protocol from Membrane 1 and
is productive, so: x12 = c12 ∗ q1 ⇒ x12 = 2;
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∗ x21 appears in the repartition protocol from Membrane 2 and
is productive, so: x21 = c23 ∗ q2 ⇒ x21 = 2;

∗ x22 appears in both repartition protocols. As a ’non-productive’
variable, x22 does not reset to 0 after each cycle, so it is up-
dated as: x22 = 1 + c13 ∗ q1 + c22 ∗ q2 = 1 + 2 + 2⇒ x22 = 5

• Step 2:

– Membrane 1:

∗ x11 = 4, x12 = 2;

∗ compute production function’s value, F1 = 4 ∗ x11 + x12 ⇒
F1 = 18;

∗ compute ’unitary portion’ q1 = F1/(c11 + c12 + c13) to be
distributed to variables x11, x22 and x21 ⇒ q1 = 6;

– Membrane 2:

∗ x21 = 2, x22 = 5;

∗ compute production function’s value, F2 = 3∗x21−3⇒ F2 =
3;

∗ compute ’unitary portion’ q2 = F2/(c21 + c22 + c23) to be
distributed to variables x11, x21 and x22 ⇒ q2 = 1;

– Compute the variables for Membrane 1 and Membrane 2 - cycle
2:

∗ x11 appears in both repartition protocols and is productive,
so: x11 = c11 ∗ q1 + c21 ∗ q2 = 6 + 1⇒ x11 = 7;

∗ x12 appears in the repartition protocol from Membrane 1 and
is productive, so: x12 = c12 ∗ q1 = 1 ∗ 6⇒ x12 = 6;

∗ x21 appears in the repartition protocol from Membrane 2 and
is productive, so: x21 = c23 ∗ q2 = 1 ∗ 1⇒ x21 = 1;

∗ x22 appears in both repartition protocols and is not produc-
tive, so x22 does not reset to 0 after each cycle and: x22 =
5 + c13 ∗ q1 + c22 ∗ q2 = 5 + 6 + 1⇒ x22 = 12.

Using the same reasoning for steps 3 and 4, the results are:

• Step 3: x11 = 11.34; x12 = 11.34; x21 = 0; x22 = 23.34;

• Step 4: x11 = 17.89; x12 = 18.89; x21 = −1; x22 = 41.43.
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Fig. 4 presents in a graphical way the evolution of the four variables
during the computation steps.

Figure 4: Evolution of variables during 4 computation steps for the NPS in Fig. 3

To summarize, a numerical P system can be formally expressed as in [10]:

Π = (m,H, µ, (V ar1, P r1, V ar1(0)), ..., (V arm, P rm, V arm(0))) (1)

where:

• m is the degree of Π, the number of membranes used in the system ;
m ≥ 1;

• H is an alphabet that contains m symbols (the labels of the mem-
branes);

• µ is a membrane structure;

• V ari is a set of variables from compartment i, and the initial values for
these variables are V ari(0);

• Pri is a set of programs from compartment i. Programs process vari-
ables and have two components, a production function and a repartition
protocol. The l -th program has the following form:

Prl,i = (Fl,i(x1,i, ..., xki,i), cl,1|v1 + ...+ cl,ni
|vni

) (2)

As for the computing power of NPSs, in [10] it is demonstrated that ”non-
deterministic systems of this type, using polynomial production functions,
characterize the Turing computable sets of natural numbers, while deter-
ministic systems, with polynomial production functions having non-negative
coefficients, compute strictly more than semilinear sets of natural numbers”.

The first simulator for NPS (SNUPS) has been developed by the authors
of this paper. The steps to be followed for running a simulation in SNUPS
are [2]:

8



1. Building the membrane structure;

2. Adding variables to a membrane;

3. Creating rules;

4. Starting computation;

5. Checking computation results;

6. Saving the membrane structure.

The simulator’s functionalities and related use cases are further presented in
the SNUPS user manual [15] and in [2].

3. Membrane controllers - a new application of P systems

Complex real-world systems, such as aerospace systems or autonomous
robots, require a control system which should be capable of responding intel-
ligently and autonomously to gaps in its knowledge and to contexts that have
not been specified in the initial design. In designing the control architectures
for complex systems, there was a long-term tendency to mimic the organi-
zation and functional complexity of the human brain. Cognitive modeling is
the process of developing computational models of cognitive processes with
the aim of understanding human cognition and cognitive architectures are
cognitive models that are domain-generic and should exhibit a wide range of
cognitive abilities, such as perception and action, memory, learning, etc. [1].
A well known research initiative concerned the development of biologically
inspired cognitive architectures [3]. DARPA’s Broad Area Announcement
(BAA), issued in 2005, asked for theories and applications aimed at ”im-
plementing computational models of human cognition that could eventually
be used to simulate human behaviour and approach human cognitive perfor-
mance in a wide range of situations”.

The use of PSs as computational modules of cognitive architectures was
first proposed in [1]. In fact, the cognitive architecture as a whole can be
considered as a membrane, while various modules of the architecture (exe-
cution, memory, planning, learning etc.) can be implemented by dedicated
membranes, either symbolic, or numerical. So, the system becomes a hybrid
membrane that can be globally considered as a three level architecture which
can be mapped onto the gross anatomy and functionality of the human brain
(Fig. 5).

The focus of this paper is on the execution level of the proposed archi-
tecture, where we introduce the new concept of membrane controller (MC).
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Figure 5: Cognitive architectures as hybrid membrane systems

A MC is an NPS that directly interacts with the process to be controlled,
receiving sensory inputs from the environment (e.g., distance values from in-
frared sensors of a robot) and sending commands to the environment (e.g.,
desired speeds to the wheels of the robot), according to a control law that the
MC is implementing such that the evolution of the process (robot) proceeds
as desired. For example, a MC may assure the desired simultaneous obstacle
avoidance and exploring behaviours of a robot.

Given a process F to be controlled, with inputs u, outputs y and prede-
fined setpoints r, a membrane controller (MC) is a construct of the following
form:

MC = (m,H, µ, (V ar1, P r1, V ar1(0)), ..., (V arm, P rm, V arm(0)), y, u) (3)

where:

• m is the number of membranes, m ≥ 1;

• H is an alphabet that contains m symbols (the labels of the mem-
branes);
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• µ is a membrane structure;

• V ari is a set of variables from compartment i ;

• V ari(0) is the set of initial values for the variables in region i ;

• Pri is the program from compartment i, composed of a polynomial
production function and a repartition protocol, chosen such that the
process outputs y match the predefined setpoints r ;

• y is a set of input variables of the MC (from a subset of regions);

• u is a set of output variables (from a subset of regions) which provide
the result of the computation.

As mentioned before, this MC has to be understood as part of a hierachi-
cal cognitive architecture, and it may receive higher level commands from
the upper levels which are also membranes (using the communication rules
from the membrane systems theory). So, by its own structure, which is
membrane-based, the MC can be easily interfaced with the other modules
and integrated into the global cognitive architecture, and this is one of the
main advantages of the proposed approach to use PS as building blocks for
cognitive/control architectures.

Furthermore, PSs are naturally parallel and distributed systems. For ex-
ample, membranes of an NPS can be distributed over a grid or over a network
of microcontrollers in a robot. The computation done in each membrane re-
gion (i.e. the execution of a membrane’s rules) can also be done in parallel.
This is very important, because given a membrane system, which is an ab-
stract implementation (membrane program) of a desired behaviour, it can be
executed in a distributed and parallel way without having to worry about the
design and implementation issues regarding parallelization and distribution.
In this sense, NPSs can be used as a modeling paradigm for parallel and dis-
tributed control systems. There is also another important property of PSs
which is given by the tree structure of the membranes. Because membranes
can only communicate with their parents and their children membranes, com-
munication in the distributed PS can be efficiently implemented.

While there are no physical implementations of a PS yet, the properties
of NPS make them suitable for hardware implementation. A generic compu-
tational node could be implemented to simulate a single membrane. These
nodes can be interconnected in a tree like fashion due to the P system’s
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membrane topology. This approach is also explored but it is not the purpose
of this paper.

The SNUPS simulator enables parallel execution of all membranes’ rules,
via threads, but not distribution over a grid or microcontrollers. A dis-
tributed simulator for NPS will be available in the next SNUPS release.

4. Membrane controllers for autonomous mobile robots

As stated in section 3, NPSs can be used as a modeling paradigm for
distributed control systems for complex systems (mobile robots, for example).
In order to prove the efficiency of this approach, two important aspects of
the NPSs are explored: the modeling power and the controller performance.

Modeling power. Multiple behaviours are implemented as NPSs in order to
prove their modeling power. These membrane systems work both on simu-
lated and real Khepera III and e-puck robots. Only the membrane parame-
ters have to be adjusted in order to work on the two different types of robots.
The implemented behaviours which are presented in this paper are: obstacle
avoidance, wall following and follow the leader.

Controller performance. One may consider the performance of a controller
to be given by the mean execution time of a cycle (see section 4.1) and some
behaviour specific indicators. It will be shown that the proposed MCs provide
high performances and generate the desired robot behaviours. The benefit is
that performance can be increased by improving the simulator’s performance
(parallelization, distribution and other optimizations) and not necessarily, by
modifying the membrane controllers themselves. The simulator (SNUPS) is
implemented as a Java servlet and membranes are stored as xml files.

The modeling power is explored in this section, while the performance of
the MCs is analyzed in section 5.

4.1. The generic structure of a membrane controller

MCs were developed for the problem of controlling differential wheeled
robots, like Khepera III [6] or e-puck [4] robots. These robots are equipped
with infrared sensors and DC motors. A general and comparative description
of these two robots is presented in Table 1.

The generic structure of all MCs is as follows:
Four main steps can be identified. The first one is the initialization phase

of the parameters specific to the robot and to the selected behaviour. In the
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Code 1 The structure of the membrane controller
parameters = initializeBehaviourParameters(robot, behaviour)

while(True):

sensors = readSensors(robot)

# simulate Numerical P System

query = constructQuery(robot, behaviour, sensors, parameters)

response = queryWebApp(address, query)

speed = extractContent(response)

setSpeed(robot, speed)

second step, the sensors are read. In the third step, the NPS corresponding
to the current MC is executed. This is done as an http request. In the fourth
step, the motors’ speeds are set and the execution of the controller is repeated
from step two. The duration of the steps two to four define the execution
time of the controller’s cycle which is used as a performance measure.

(a) Khepera III robot - bottom view
(from the Khepera III manual [6])

(b) e-puck robot - top view (from the
e-puck website [4])

Figure 6: IR sensors placement for the Khepera III and e-puck robots

The execution of a NPS is done though a web interface. This interface
is basically a Java web application, which receives the values of the input
variables of the NPS, calls the SNUPS engine and returns the speeds for the
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Khepera III e-puck

Processor dsPIC 30F5011 @ 60MHz dsPIC 30F6014A
Effectors 2 DC brushed servo motors 2 stepper motors with

with incremental encoders incremental encoders,
1 speaker, 1 front led,
1 body led,
1 led ring (8leds)

Max. speed 0.5 m/s 0.129 m/s
Sensors 11 Infra-red (9 around, 8 Infra-red (around),

2 ground), 5 Ultrasonic 1 accelerometer,
3 microphones,
1 CMOS camera

Autonomy 8 hours moving continuously 2-3 hours of intensive use
Comm RS232 and bluetooth RS232 and bluetooth
Diameter 130 mm 70 mm
Distance
between 90 mm 53 mm
wheels
Pulse[mm] 0.047 mm/pulse 0.1288 mm/pulse

Table 1: Khepera III and e-puck hardware description

two motors. To be able to run the web application, a web server and a servlet
container must be installed and run on the computer. In order to execute a
NPS, a minimum of input parameters must be passed to the web interface.
The following parameters must always be defined:

1. cycleNo - number of computational cycles to be performed by the NPS;
2. behaviour - desired behaviour;

4.2. Obstacle avoidance behaviour

The NPS presented in Fig. 7 is a MC for obstacle avoidance. It imple-
ments the following control law:

lw = CruiseSpeedLeft+
8∑

i=1

si ∗ weightLefti (4)

rw = CruiseSpeedRight+
8∑

i=1

si ∗ weightRighti (5)
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The input variables for the membrane are the values from the infrared sen-
sors, si, the weights corresponding to the left and right motors, weightLefti
and weightRighti, and the cruising speeds of the motors, cruiseSpeedLeft
and cruiseSpeedRight. The output variables are the speeds of the two mo-
tors, lw and rw. Because of the communication constraints of the NPS, the
two control laws are computed in sequence. First, the left motor speed is
computed and then the right motor speed.

Figure 7: Membrane controller for the obstacle avoidance behaviour

As it is shown in Fig. 7, there are 8 computational membranes, Computei,
and a CruiseSpeed membrane which are used to compute each speed value.
The MC executes the following steps:

1. In the first cycle, the following operations are executed:

(a) sensors’ values from the Sensorsi membranes are copied in the
Computei membranes (svali ← si);

(b) the weights corresponding to the left speed are moved in the
Computei membranes and the weights corresponding to the right
speed are moved in their place
(wi ← weightLefti, weightLefti ← weightRighti;

(c) the cruising speed of the left motor is moved to the CruiseSpeed
membrane (cruiseSpeed← cruiseSpeedLeft).

15



2. In the second cycle:

(a) the left motor’s speed is computed in the variable rw; this value
is obtained by summing the contribution from the Computei and
CruiseSpeed membranes;

(b) the values (sensor values, weights and cruise speed) used to com-
pute the right motor’s speed are moved in the corresponding vari-
ables, as described in cycle 1 for the left motor’s speed;

3. In the third cycle:

(a) the left motor’s speed is moved in its final place (lw ← rw);
(b) the right motor’s speed is computed in the variable rw; this value

is obtained by summing the contribution from the Computei and
CruiseSpeed membranes;

This MC has to be executed in exactly three cycles in order to return the
correctly computed motors’ speeds.

The cruise speeds and the weights are dependent on the type of the robot
for which the MC is used. Cruise speeds are set such that the robot moves
forward with a given speed when there are no visible obstacles. The values of
the weights represent the contribution of the sensors to the left, and respec-
tively right motor’s speed. For example, the front left sensor has the largest
positive contribution to the left motor speed and thus the value of the weight
corresponding to that sensor is a positive large number. On the other hand,
the same sensor has largest the negative contribution to the right motor’s
speed and thus the corresponding weight is a large negative number. Based
on this, weights have been experimentally determined for the e-puck and
Khepera III robots. The scale of the values is determined by the maximum
robot’s speed and the maximum sensor’s reading, while the proportional con-
tribution of each sensor is determined by its placement angle with regard to
the front direction of the robot. These values are presented in Table 2. The
sensors’ values are filtered before being sent to the membrane controller. All
values smaller than a given threshold are ignored. It is also important to no-
tice that sensors are numbered differently on Khepera III and e-puck robots
as it is shown in Fig. 6.

4.3. Wall following behaviour

The wall following behaviour is implemented as a MC as shown in Fig. 8.
The NPS implements the following control law:
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Khepera III e-puck

SpeedRange [-43000, 43000] [-1024, 1024]
MaxIRValue 4095 4095
CruiseSpeed 6000 200
Threshold 100 100
weightLeft [ 0, 1, 3, 5, -5, -3, -1, 0, 0] [-1, -0.6, -0.2, 0, 0, 0.2, 0.6, 1]
weightRight [ 0, -1, -3, -5, 5, 3, 1, 0, 0] [ 1, 0.6, 0.2, 0, 0, -0.2, -0.6, -1]

Table 2: Khepera III and e-puck obstacle avoidance parameters

lw = CruiseSpeedLeft+ kDist ∗ (refDist − sDist)

+kHeading ∗ (refHeading − (γ ∗ sAvoid + sFW − α ∗ sBW )) (6)

rw = CruiseSpeedRight− kDist ∗ (refDist − sDist)

−kHeading ∗ (refHeading − (γ ∗ sAvoid + sFW − α ∗ sBW )) (7)

The above control laws are responsible for maintaining given distance and
heading to the wall. The input variables for the distance to the wall con-
trol component are the value of the infrared sensor responsible for measuring
the distance to the wall, sDist, the reference distance to the wall, refDist,
and the proportional factor for the distance controller, kDist. The input
variables for the heading to the wall control component are the values of the
infrared sensors responsible for measuring the deviation from the wall’s head-
ing, sFW and sBW , the value of the infrared sensor responsible for detecting
a front wall or obstacle, sAvoid, the reference deviation, refHeading (is set to
0), the proportional factor for the heading controller, kHeading, the sensor
placement correction factor, α, and the weight of the front sensor, γ. The
cruising speeds of the motors are also input variables, cruiseSpeedLeft and
cruiseSpeedRight. The output variables are the speeds of the two motors,
lw and rw.

The NPS presented in Fig. 8 has two membranes, DistanceController
and HeadingController, which will compute the two control laws (without
the cruising speed) in parallel and then these values are added, respectively
subtracted, from motor speed values. The MC executes the following steps:

1. In the first cycle, the following operations are executed:
(a) the distance control component is computed and moved to the

main membrane, WallFollow, in the variable uErr.
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Figure 8: Membrane controller for the wall following behaviour

(b) the heading control component is computed and moved to the
main membrane, in variable uErr;

(c) the left cruising speed (cruiseSpeedLeft) and the right cruising
speed (cruiseSpeedRight) are moved to the left and right motor
speed variables (lw and rw);

2. In the second cycle:

(a) the value of the variable uErr is distributed to the two speed
membranes, SpeedLeft and SpeedRight, in the variables uLeft
and uRight;

3. In the third cycle:

(a) in the left motor speed membrane, SpeedLeft, the variable uLeft
is added to the left motor speed variable, lw;

(b) in the right motor speed membrane, SpeedRight, the variable
uRight is subtracted from the right motor speed variable, rw;

In order to compute the motors’ speeds, the wall following MC has to be
executed for at least three cycles.
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The MC from Fig. 8 can be used to follow a wall on the left or right
side of the robot with both Khepera III or e-puck robots. This is done by
choosing the appropriate set of sensors as input variables for the controller.
For example, for the e-puck robot, following a wall on its right side, the third
sensor, s3, has to be selected as the distance measuring sensor (sDist), the
second and the forth sensors as heading deviation measuring sensors (sFW

and sBW ) and the first sensor as the obstacle detection sensor (sAvoid). The
value of the sDist sensor has to be maintained at the reference refDist value.
This is done using a proportional law, using the factor kDist.

The deviation of the robot’s heading in respect to the wall is computed as
the difference between the values of the two sensors placed on the left and on
the right of the normal of the robot’s heading. These sensors are the closest
to the normal. Because the two sensors are not symmetrical in respect to the
normal, a correction factor, α, is used. The difference has to be maintained
at zero, thus refHeading is set to zero. This control is also a proportional
one which uses the factor kHeading. In order to be able to avoid front walls
or obstacles, the weighted value of the front sensor is added as a positive
deviation of the heading. Only the value of the front sensor is prefiltered for
the wall following behaviour, similar to the avoid behaviour (see Fig. 4.2).
In this way the robot can follow convex and concave contours.

The parameters and the set of sensors used in the wall following MC
depend on the robot and are shown in Table 3.

Khepera III e-puck

sDist s2(left), s7(right) s6(left), s3(right)
refDist 600 300
kDist -6(left), 6(right) -0.5(left), 0.5(right)

sAvoid s4(left), s5(right) s8(left), s1(right)
sFW s3(left), s6(right) s7(left), s2(right)
sBW s1(left), s8(right) s5(left), s4 (right)
refHeading 0 0
kHeading -10(left), 10(right) -1(left), 1(right)
α 1.25 1.25
γ 0.75 0.75

Table 3: Khepera III and e-puck wall following parameters and sensor sets (see Fig. 6)
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4.4. Follower behaviours

In Fig. 9, the MC implementing the ’follow the leader’ behaviour is shown.
The MC implements the following control law:

lw = CruiseSpeedLeft− kDist ∗ (refDist − 0.5 ∗ (sDist1 + sDist2))

+kHeading ∗ (refHeading − (sR1 + sR2 − (sL1 + sL2))) (8)

rw = CruiseSpeedRight− kDist ∗ (refDist − 0.5 ∗ (sDist1 + sDist2))

−kHeading ∗ (refHeading − (sR1 + sR2 − (sL1 + sL2))) (9)

Figure 9: Membrane controller for the follower behaviour

The above control laws are responsible for maintaining given distance
and heading to the leader robot. These are very similar to those of the wall
following behaviour (see Sec. 4.3). The only differences are the set of sensors
for measuring the distance to the leader, sDist1 and sDist2, and for measuring
the deviation of the robot’s heading in respect to the leader’s heading, sR1,
sR2, sL1 and sL2. The distance to the leader robot is computed as the mean
value of the two front sensors, while the heading deviation is approximated
by the difference between the sum of the two left and sum of the two right
sensors in respect with the heading of the robot (see Fig. 6). Parameters and
sensor sets are presented in Table 4.
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Khepera III e-puck

sDist1 s4 s1
sDist2 s5 s8
refDist 600 200
kDist -5 -0.5

sR1 s5 s1
sR2 s6 s2
sL1 s4 s8
sL2 s3 s7
refHeading 0 0
kHeading 12 0.75

Table 4: Khepera III and e-puck follower behaviour parameters and sensor sets (see Fig. 6)

Another difference is that the control laws are asymmetric, the sign of
the components is different for the left and right motor’s speeds, as op-
posed to those of the wall following behaviour. This problem is solved by
delaying one of the controller components, in this case the heading compo-
nent, and alternating the sign of the contribution to the left motor speed,
uLeft. The delay is implemented using the Delay membrane, which wraps
the HeadingController membrane. The sign of the contribution uLeft is
given by the SignGeneration membrane, which generates an alternative sign
in the sign variable of the SpeedLeft membrane.

5. Experimental results and discussions

In this section the quantitative results, obtained from experiments on
real and simulated robots are presented. These results show that the perfor-
mance of the MC is sufficiently high in order to achieve a desired robot be-
haviour. The experiments on real robots (Khepera III and e-puck) were done
in an arena with obstacles as shown in Fig. 10. The simulated experiments
were done in the Webots 6.2.1 robotics simulator and the arena is shown in
Fig. 10(e) and 10(f). For the follower behaviour, the same arenas were used,
but without obstacles, because the follower robot cannot distinguish between
the leader robot and obstacles by using only the infrared sensors.

All experiments were conducted to cover a variety of interesting cases
of the tested behaviours. For example, the wall following experiment was
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(a) Khepera III - avoid (b) Khepera III - wallfollow

(c) e-puck - avoid (d) e-puck - wallfollow

(e) Khepera III - simulation (f) e-puck - simulation

Figure 10: Arena configurations for the experiments with real and simulated robots
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conducted in an arena with walls that contained open and closed corners,
straight segments and corners of other angles (Fig. 10(b) and 10(d)). In
the obstacle avoidance behaviour, the experiments were conducted in the
configurations show in Fig. 10(a) and 10(c) and for an extended amount
of time in order to ensure that the robot may encounter as many obstacle
avoidance situations as possible.

The common performance index used to evaluate the proposed MCs is
the duration of the controller cycle (see section 4). The duration of the cycle
includes the communication time with the robot, reading the sensors’ values
and setting the speed. It is therefore important to measure the execution time
of the membrane controller, in this case the http query duration, in order
to have a clear perspective of the controller performance. The execution
time of the MC (query duration) is stable and very small in comparison to
the total cycle duration. The MC is also scalable, the query time does not
increase very much with the number of membranes in the controller (the
avoid controller has 37 membranes, while the wall follow controller has 7
membranes). The results of the experiments in regard with these performance
indices are summarized in table 5 for each behaviour.

The execution time of the MC was chosen as a performance index, because
it becomes very important in two cases: 1) when implementing the MC on a
system with few resources (memory and CPU power); 2) when the MCs are
used as modules in a more complex architecture which must demonstrate a
complex cognitive behaviour.

The execution of the membranes was performed on a quad core system
under Ubuntu 8.04 for the experiment with real robots and on a dual core
system under Windows Vista for the simulations. In all experiments, Apache
tomcat 7.04 was used as servlet container. The two configurations determine
the difference in the query time (the execution time of the membrane con-
troller) in the two types of experiments. The performance increases, due to
the number of available parallel units (processor cores), without modifying
the membranes themselves (see table 5).

Behaviour specific performance indices are presented for each membrane
controller in the following.

5.1. Obstacle avoidance controller

The avoid controller is evaluated based on the maximum value of the
sensors. This value is zero when no obstacles are detected and increases
when the robot gets close to an obstacle. The evolution of this parameter
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Behaviour Measure
Khepera III e-puck
real webots real webots

Avoid (37
membranes)

cycle time
mean 0.1788 0.0543 0.1815 0.0540
stddev 0.0136 0.0128 0.0215 0.0114

query time
mean 0.0131 0.0540 0.0130 0.0538
stddev 0.0048 0.0127 0.0051 0.0114

Wall follow
left (7
membranes)

cycle time
mean 0.1704 0.0276 0.1728 0.0278
stddev 0.0128 0.0094 0.0187 0.0075

query time
mean 0.0054 0.0273 0.0052 0.0276
stddev 0.0032 0.0095 0.0025 0.0075

Wall follow
right (7
membranes)

cycle time
mean 0.1709 0.0273 0.1739 0.0276
stddev 0.0131 0.0065 0.0204 0.0062

query time
mean 0.0055 0.0271 0.0053 0.0274
stddev 0.0065 0.0065 0.0025 0.0062

Follower (9
membranes)

cycle time
mean 0.1085 0.0314 0.1745 0.0318
stddev 0.0189 0.0087 0.0183 0.0123

query time
mean 0.0066 0.0313 0.0073 0.0316
stddev 0.0030 0.0088 0.0089 0.0124

Table 5: Summary of results from experiments with simulated and real Khepera III and
e-puck robots (all times in sec)

during the experiments is shown in Fig. 11 and 12. The peaks in the graphs
correspond to obstacle detection and avoidance. In the experiments with
real robots, this parameter fluctuates more because of the sensors’ noise and
because the arena is more cluttered than in the simulated experiments (see
Fig. 10). The peaks for Khepera III robot are higher than for the e-puck
robot due to the fact that Khepera III is not round shaped (see Fig. 6(a)).

In Fig. 11 and 12, are also shown the left and right speeds corresponding
to the sensory input. The cruise speed of the robot is represented by the
black line as reference. The two speeds equal the cruising speed when the
robot does not perceive any obstacle, while the peaks correspond to obstacles
that are in the robot’s detection area. Details about the evolution of speed
profiles are summarized in Table 6, which contains the mean and standard
deviation of the speed in absolute value, the maximum and minimum speed
and the maximum rate of change.
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(a) Real Khepera III
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(b) Simulated Khepera III

Figure 11: Evolution of the performance parameter and of speeds for the obstacle avoid-
ance behaviour with Khepera III robots
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(a) Real e-puck
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(b) Simulated e-puck

Figure 12: Evolution of the performance parameter and of speeds for the obstacle avoid-
ance behaviour with e-puck robots
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Measure
Khepera III e-puck
real webots real webots

distance to objects
(sensor raw value)

mean 991 264 82 24
stddev 888 612 87 83
max 3974 3962 670 1472

mean speed
left 5650 6158 208 203
right 6494 5968 195 199

stddev of speed
left 1803 1630 59 42
right 1803 1630 59 42

maximum speed
left 29059 22554 574 718
right 35864 26998 815 679

minimum speed
left -23864 -14998 -415 -279
right -17059 -10554 -174 -318

maximum rate of change
left 13878 5842 303 177
right 13878 5842 303 177

Table 6: Summary of results for the obstacle avoidance behaviour from experiments with
simulated and real Khepera III and e-puck robots

5.2. Wall following controller

The performance parameter chosen for the wall follow controller evalua-
tion is the distance to the wall. The distance is measured by an on-board
infrared sensor (high values represent small distances, while low values rep-
resent large distances). The evolution of the distance to the wall and of
the speeds of the two wheels during the experiments with real robots are
shown in Fig. 13 and 14. Similar to the obstacle avoidance experiments,
the parameter fluctuates more in the experiments on the real robots than
in simulation because of the sensors’ noise. Peaks in the graphs represent
changes of direction caused by corners in the environment. The black hor-
izontal lines represent the reference value for distance sensor, respectively
the cruise speed. It can be noticed that the performance parameter and the
two speeds are fairly stable during the following of straight segments of the
wall. In table 7 there is presented a summary of the experiments with both
simulated and real robots. The difference between the reference distance and
mean distance to the wall, in absolute value, is show in table 7 as distance
error. The distance error is smaller in the simulated experiments that it is
in the real ones.
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(a) Khepera III - follow wall on the left
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(b) Khepera III - follow wall on the right

Figure 13: Evolution of the performance parameter and of speeds for the wall following
behaviour with real Khepera III robots
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(a) e-puck - follow wall on the left
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(b) e-puck - follow wall on the right

Figure 14: Evolution of the performance parameter and of speeds for the wall following
behaviour with real e-puck robots
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Side the
wall is
followed

Measure
Khepera III e-puck

real webots real webots

left

distance to wall
(sensor raw value)

mean 514 721 289 264
stddev 239 354 72 118

distance error 86 121 11 36

mean speed
left 6340 5938 194 202
right 6068 6462 213 213

stddev of speed
left 2859 3261 74 135
right 2859 3261 74 135

maximum speed
left 31336 62708 761 3553
right 23432 56766 600 1678

minimum speed
left -11432 -44766 -200 -1278
right -19336 -50708 -361 -3153

maximum rate
of change

left 25984 72750 436 2147
right 25984 72750 436 2147

right

distance to wall
(sensor raw value)

mean 542 604 189 256
stddev 286 351 47 77

distance error 58 4 111 44

mean speed
left 6174 6576 214 210
right 6536 5936 195 195

stddev of speed
left 3642 3595 78 93
right 3642 3595 78 93

maximum speed
left 35218 57848 817 443
right 30538 63208 926 3563

minimum speed
left -18538 -51208 -526 -3163
right -23218 -45848 -417 -43

maximum rate
of change

left 37286 65994 737 2086
right 37286 65994 737 2086

Table 7: Summary of results for the wall following behaviour from experiments with
simulated and real Khepera III and e-puck robots

5.3. Follower Controller

The performance parameter chosen for the follow controller evaluation is
the distance to the leader. The distance in this case is set as the mean of the
front sensors’ values. Fig. 15 shows the evolution of the parameter during
experiments. Peaks in these graphs represent corrections in the heading of
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the robot in order to match the heading of the leader. The leader has a
predefined sine motion in order to test speed and heading matching. Table 8
presents the mean and standard deviation of the speeds and distance to the
leader.

Measure
Khepera III e-puck
real webots real webots

distance to leader
(sensor raw value)

mean 459 352 110 136
stddev 126 314 20 279

mean speed
left 11047 12073 291 367
right 10210 12773 288 381

stddev of speed
left 7364 13563 42 468
right 7181 14774 40 536

maximum speed
left 22123 91754 379 1275
right 33360 90657 374 1296

minimum speed
left -19991 -81845 155 -4678
right -9773 -78850 181 -4645

maximum rate of change
left 21703 92496 113 5065
right 28313 109984 137 5050

Table 8: Summary of results for the follow the leader behaviour from experiments with
simulated and real Khepera III and e-puck robots

5.4. Fuzzy Avoid Controller

Experiments with a fuzzy logic based obstacle avoidance controller were
also performed in order to show that MCs can match the performances of
fuzzy controllers. The Mamdani-type fuzzy controller uses sensorial informa-
tion from the IR sensors of the robot, and has 3 inputs, computed as the sum
of the left (2 and 3)), front (4 and 5) and respectively right (6 and 7) sensor
group values, see Fig. 6(a). In this way the complexity of the fuzzy controller
is reduced. Five Gaussian membership functions were used for each input.
This determines a complete rule base of 125 rules. The fuzzy controller was
tuned manually in experiments on real robots. The fuzzy controller was im-
plemented and run in Matlab 7.6 under Windows Vista. Fig. 16 presents the
maximum sensors’ value in each cycle. A summary of the results with the
fuzzy obstacle avoidance controller is shown in table 9.

The maximum sensor’s value of the two controllers, membrane based and
fuzzy logic based, respectively, show that both manage to avoid obstacles
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(a) real Khepera III
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Figure 15: Evolution of the performance parameter and of speeds for the follow the leader
behaviour with real robots
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Figure 16: Performance indices in each cycle for the Khepera III robot with fuzzy controller
for obstacle avoidance

Measure Value

distance to objects
(sensor raw value)

mean 570
stddev 810
max 3966

cycle time
mean 0.2507
stddev 0.0262

query time
mean 0.0064
stddev 0.0038

Table 9: Summary of results from experiments with fuzzy obstacle avoidance controller
on real Khepera III robots

well. However, there is a qualitative difference in the exhibited behaviours.
The fuzzy controller avoids obstacles very sharply, which is why there are so
many high, but narrow, peaks in Fig. 16. The peaks in Fig. 11(a) on the other
hand are lower and wider. The robot avoids obstacles more smoothly with
the MC controller, than with the fuzzy one. This also has as a consequence
that the mean value of the performance parameter is smaller for the fuzzy
controller than for the MC (Tables 6 and 9).

6. Conclusions and future improvements

This paper introduced the notion of membrane controllers that are built
based upon the architecture and functionality of a numerical P system in
which variables evolve by means of programs composed of production func-
tions and repartition protocols. The numerical and deterministic nature of
this system, together with the distributed and parallel nature and the com-
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puting power inherent to P systems, make membrane controllers suitable
candidates for the control of complex systems. The proposed innovative
concept is validated on experiments on simulated and real mobile robots for
which three desired behaviours have been generated (obstacle avoidance, wall
following and follow the leader). A comparison with a fuzzy logic controller
has been provided.

Further developments will include two main directions. First, more mem-
brane controllers for some other desired behaviours will be generated, pos-
sibly by combining desired behaviours (such as follow a leader while avoid-
ing obstacles). Second, the development of symbolic P systems to be used
at higher levels in the proposed hierarchy of the cognitive architecture and
means to communicate with lower level membrane controllers are to be de-
signed and implemented. More complex robotic applications will be consid-
ered, for example collaborative robotics in which teams of robots are asked
to jointly achieve a goal, such as identifying and collecting objects.

The proposed concept and the software implementation of membrane
controllers for robot behaviours opens the way to the development of an in-
tegrated biologically inspired cognitive architecture, where the main three
modules (execution, coordination, and organization) are membranes them-
selves, and where there is a combination of symbolic and numerical P systems.
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