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1. Introduction

P systems represent a computational paradigm inspired by the cell architecture and
functioning. Several classes of P systems have been introduced in the framework
of membrane computing [11]. Numerical P systems (NP systems) are a type of P
systems, inspired by the cell structure, in which numerical variables evolve inside
the compartments by means of programs; a program (or rule) is composed of a
production function and a repartition protocol. The variables have a given initial
value and the production function is a multivariate polynomial. The value of the
production function for the current values of the variables is distributed among
variables in certain compartments according to a repartition protocol. The formal
definition of NP systems can be found in [10] where the authors introduce this type
of P systems and show some possible applications in economics.
NP systems were designed both as deterministic and non-deterministic systems

[10]. Non-deterministic NP systems allow the existence of more rules per each
membrane and the rule to apply in any step is selected by an “oracle”,while in de-
terministic NP systems the state at time t+1 is completely determined by the state
at time t (one way to achieve this is by having at most one rule per membrane).
NP systems were used as a naturally parallel and distributed modeling tool for the
design of robot controllers [2], [6], [7]. Designing robot controllers requires deter-
ministic mechanisms. Therefore, an extension of NP systems, Enzymatic Numerical
P systems (ENP systems), in which enzyme-like variables allow the existence of
more than one program (rule) in each membrane, while keeping the deterministic
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nature of the system, were introduced in [5]. Due to their properties, ENP systems
represent a more powerful modeling tool for robot behaviors than classical NP
systems [6], [7].
In this paper we extend the results obtained in [13] regarding the power of

ENP systems. In [13] it is shown that ENP systems are universal for both non-
deterministic and deterministic case (for production polynomials of degree two).
Such universality results are also interesting from the robot control point of view, as
they guarantee that any computer program or robot behavior can be implemented
using ENP systems. Therefore, in this paper we improve the universality result
obtained in [13] for deterministic ENP systems, working in parallel execution mode,
by reducing the degree of the polynomials of the production functions from 2 to 1
and the number of membranes from 253 to 6.
The paper is structured as follows. In the next section the authors provide the

formal definition of ENP systems. In section 3, the previous results obtained re-
garding the power of ENP systems are presented and explained. Section 4 provides
the proof of the new result regarding universality of ENP systems. Finally, section
5 is dedicated to the conclusions of the paper.

2. Definitions

An ENP system is defined as an NP system with special enzyme-like variables
which control the execution of the rules. The reader is assumed familiar with basic
ideas of membrane computing, e.g., [8, 9, 11].

Π = (m,H, µ, (V ar1, P r1, V ar1(0)), . . . , (V arm, P rm, V arm(0)), vj0,i0) (1)

where:

• m is the degree of the membrane system (the number of membranes), m ≥ 1;

• H is an alphabet of membrane labels;

• µ represents the tree structure of the membrane system;

• vj0,i0 is a distinguished variable from a compartment i0 which provides the results
of the computation;

• Each membrane is defined by a 3-tuple:
(1) V ari is a (finite) set of variables from compartment i;
(2) V ari(0) are the initial values of the variables from compartment i;
(3) Pri is the set of programs from compartment i. Programs have one of the

two following forms:
a) non-enzymatic form, which is exactly like the one from the standard

NP systems:

Prj,i = Fj,i(x1,i, . . . , xki,i) → cj,1|v1 + ...+ cj,ni
|vni

(2)

b) enzymatic form

Prj,i = Fj,i(x1,i, . . . , xki,i)|ej → cj,1|v1 + ...+ cj,ni
|vni

(3)

where ej ∈ V ari is an enzyme-like variable which controls the activa-
tion of the rule.
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A program is composed of a production functions, a repartition protocol and
optionally an enzyme-like variable. Each program is evaluated in three steps,
activation-production-distribution. First of all, it is established which rules are
active. There can be more than one active rule in a membrane or none. A rule is
active if it is in the non-enzymatic form or if the associated enzyme has a greater
value than one of the variables involved in the production function. All active rules
in the membrane system are executed in parallel in one computational step. This
parallel execution mechanism is denoted by allP.
The actual execution of the programs is done in the following to steps. At any

time t, every production function Fj,i(x1,i(t), ..., xki,i(t)) from every active program
is computed. The current values of the variables are used, even if they appear in
more than one production function. The variables x1,i, ..., xki,i belong to compart-
ment i. A production function is not required to use all variables from the com-
partment the corresponding program belongs to. However, the variables which are
used by a production function of an active program will be reset to zero before the
distribution step.
In the final step, the value Fj,i(x1,i(t), ..., xki,i(t)) is distributed to variables

v1, . . . , vni
, according to coefficients cj,1, . . . , cj,ni

in order to obtain the values of
these variables at time t + 1. The set of variables {v1, . . . , vni

} is the union of
the set of variables from the membrane the program belongs to, the parent mem-
brane and the children membranes. Formally, {v1, . . . , vni

} = V ari ∪ V arpar(i) ∪(
⋃

ch∈Ch(i) V arch

)

, where par(i) is the parent of membrane i and Ch(i) is the set of

children of membrane i from µ. The coefficients cj,1, . . . , cj,ni
are natural numbers

(they may be also 0, in which case the terms “+0|x” are omitted) [10] which spec-
ify the proportion of the current production distributed to each variable v1, ..., vni

.
Denote with Cj,i =

∑ni

s=1 cj,s the sum of all coefficients of the repartition protocol.
The value

qj,i(t) =
Fj,i(x1,i(t), ..., xki,i(t))

Cj,i

represents the “unitary portion”. The value qj,i(t) ∗ cj,s, 1 ≤ s ≤ ni, will be added
to the value of the variable vs which belongs to the repartition protocol of program
j.
If after applying all the rules, a variable receives “contributions” from several

programs, then they are all added in order to produce the next value of the variable.
The execution of the model is synchronized, meaning that each of the three

described steps performed at time t is done for all programs at the same time.

3. The power of Enzymatic Numerical P systems

In [13] the authors prove and analyze the universality of ENP systems. The main
results in [10] and [13] regarding the power of NP systems and ENP systems are
the following (the notations are immediately explained):

Theorem 3.1 NRE = N+P8(poly
5(5), seq) = N+P7(poly

5(6), seq) =
NP7(poly

5(5), enz, seq) = NP∗(poly
1(2), enz, oneP ) =

NP254(poly
2(253), enz, allP, det).

NRE represents the family of computable (recursively enumerable) sets of nat-
ural numbers. Denote by N(Π) the set of values the distinguished variable vj0,i0



October 22, 2012 19:47 International Journal of Computer Mathematics IJCM

4 Cristian Ioan Vasile and Ana Brânduşa Pavel and Ioan Dumitrache

of membrane system Π takes during a computation, a (finite or infinite) sequence
of transitions. When the superscript + is used, N+(Π), it indicates that only the
positive values of vj0,i0 are considered. The family of sets of numbers N(Π) com-
puted by NP systems with at most m membranes, production functions which are
polynomials of degree at most n, with integer coefficients, with at most r variables
in each polynomial, is denoted by NPm(polyn(r)), m ≥ 1, n ≥ 0, r ≥ 0 [13]. If one
of the parameters m,n, r is not bounded, then it is replaced by ∗. The superscript
+ used in N+Pm(polyn(r)) denotes that only the positive values are considered
as results of the computations. seq indicates the fact that the system works in
sequential mode, in each step only one program is chosen non-deterministically to
be executed in every membrane. oneP indicates the maximally parallel mode. In
this execution mechanism, in each membrane a maximal set of programs (in the
sense of set inclusion) is chosen non-deterministically to be executed such that no
two programs share variables in their production functions. Finally, allP indicates
the deterministic parallel execution model described above, where all active pro-
grams are executed, regardless of whether they share variables in their production
functions. To highlight that the execution model is deterministic, the indicator det
is used. The absence of det implies that the systems may also be non-deterministic.
enz is used to indicate that the enzymatic mechanism is used. Again, the absence
of enz implies that the enzymatic mechanism is not used.
The enzymatic mechanism and the advantages of ENP systems are detailed in

[6], [1].

4. An improved universality result

The following theorem improves the parameters in the equality NRE =
NP254(poly

2(253), enz, allP, det), thus proving again the power of the enzymatic
mechanism. The obtained result is optimal in what concerns the degree of the used
polynomials - they are of degree one, but at the same time we improve the result
from [13] in what concerns the number of membranes and the number of variables
in each production polynomial.

Theorem 4.1 NRE = NP4(poly
1(6), enz, allP, det).

Proof The proof is constructive and is based on the characterization of recursive-
enumerable set (RE) using polynomials [3, 12]. It is proven that for every RE set
S there is a multivariate polynomial Q with integer coefficients such that the set
of positive values of Q, corresponding to tuples of natural numbers, is S.

∀S ⊆ N
∗( S is a RE set), ∃Q ∈ Zn[X] s.t. S = {Q(x)|x ∈ N

n, Q(x) > 0} ,

where N
∗ is the set of natural numbers without 0, Zn[X] is the set of polynomials

of n variables with integer coefficients. It is also shown that polynomials of degree
at most 5 and with 5 variables are sufficient to generate the elements of RE sets.
A computing device X is Turing universal if for every RE set S there is an

instance of X which generates the elements of S. In our case, using the character-
ization by polynomials, it is suffice to show that for every polynomial Q of degree
at most 5 and with 5 variables there is an ENP system which can enumerate all
5-tuples of natural numbers and compute the corresponding values of Q.
This technique was first employed to show that “standard” NP systems are

universal in [10] and also in [13] to show the universality of ENP systems.
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The ENP systems considered in the theorem are deterministic. As such, in order
to construct a membrane system corresponding to some polynomial Q, we propose
two simple deterministic methods of enumerating all 5-tuples of natural numbers
(the method can be used to enumerate tuples of natural numbers of any length)
and of computing a polynomial of degree at most 5 with 5 variables.
The generating method is the same as in the proof from [13]. The variables of

Q forming a 5-tuple are regarded as a single number with 5 digits in a certain
base. The algorithm continuously counts down from the highest 5-digit number to
zero in ever increasing base. Therefore, if the current base is b+ 1, the membrane
will generate the numbers from bbbbb to 00000. When the null tuple is reached
the variables are reset to the highest 5-digit number of the next base, b + 2. The
algorithm starts with base 6 from the tuple (5, 5, 5, 5, 5) and generates (5, 5, 5, 5, 4),
. . . , (5, 5, 5, 5, 0), (5, 5, 5, 4, 5), . . . , (0, 0, 0, 0, 0). At this point it will move to the
tuple (6, 6, 6, 6, 6) which corresponds to the highest 5-digit number in base 7. The
process repeats indefinitely, thus generating all 5-tuples of natural numbers in a
deterministic way.
The computing method is based on the fact that every polynomial Q of degree

5 with 5 variables can be put in the following form (lemma from [13]):

Q(x1, . . . , x5) =
m∑

i=1

βi · (a1,ix1 + · · ·+ a5,ix5 + a6,i)
5 (4)

where m = 252 and represents the maximum number of terms of Q in the general
form (Q =

∑

p1+...+p5≤5

∏5
i=1 x

pi

i ) , βi are polynomial-specific coefficients and aj,i
are some integer constants.
The form (4) is well suited to compute the values of Q with only polynomials

of degree 1 in the following way. First the values vi = a1,ix1 + · · · + a5,ix5 + a6,i
are computed. Then vi are raised to the fifth power. Computing the power of a
number can be done using only multiplication; computing the 5-th power of vi
can be done by first computing a = vi · vi = v2i , then b = a · a = v4i and finally
c = vi · b = v5i . Since vi are natural numbers, multiplication can be performed as
repeated addition, a · b = a+ . . .+ a

︸ ︷︷ ︸

b

. The final step is to sum all terms,
∑m

i=1 βiqi

with qi = v5i .
The two methods were used to construct the following ENP system, also repre-

sented graphically in figure 1.

Π = (4, H, µ, (V arGenerate, P rGenerate, V arGenerate(0))

(V arCompute, P rCompute, V arCompute(0), enum),

(V arPow5, P rPow5, V arPow5(0)),

(V arMult, P rMult, V arMult(0))),

H = {Generate, Compute, Pow5,Mult},
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µ = [
Generate

[
Compute

[
Pow5

[
Mult

]
Mult

]
Pow5

]
Compute

]
Generate

,

V arGenerate = {xi, ej , ezk, eri, n, et, g, gc : 1 ≤ i ≤ 5, 1 ≤ i ≤ 7, 2 ≤ k ≤ 5},

P rGenerate = {n → 1|n, et → 1|gc,

1 + x1|e1 → 1|er1, −1 + g|e1 → 1|x1, 1 + n+ x1|e1 → 1|x1}

∪ {j · ej → 1|ej+1 + (j − 1)|et : 1 ≤ j ≤ 5}

∪ {1 + xi|e1 → 1|ezi, 1− i+ et|eri−1
→ 1|xi : 2 ≤ i ≤ 5}

∪ {g + (ezi + eri−1)|ei → 1|eri, 2− i+ n+ et|eri → 1|xi

: 2 ≤ i ≤ 5}

∪ {2 + et|er5 →

5∑

i=1

1|xi + 1|n, g + er5|e6 → 1|gc, e6 → 1|e7,

e7 → 1|ec1}

∪ {g + 2 · xi|e7 → 1|xi + 1|xci : 1 ≤ i ≤ 5},

V arGenerate(0) = (5, 5, 5, 5, 5, 1, 0, . . . , 0, 5, 0, 0, 0),

V arCompute = {xci , e
c
j , t, g

∗, ept, fQ, enum, aux, ef : 1 ≤ i ≤ 5, 1 ≤ j ≤ 506},

P rCompute = {g∗ +
5∑

i=1

ai,k · x
c
i + a6,k|ec2k−1

→ 1|s1,

3 · ec2k−1 → 1|ec2k + 2|ep1, ec2k|ept
→ 1|ec2k+1,

g∗ − 2 · βkt|ec2k+1
→ 1|aux+ 1|ef : 1 ≤ k ≤ 252}

∪ {2 · ec505 → 1|ef + 1|ec506, aux|ef → 1|fQ, −fQ|g∗ → 1|enum,

−(fQ + ec506) → 1|ef , enum+ fQ + ept → 1|gc, ec506 → 1|e1}

V arCompute(0) = (0, 0, . . . , 0),

V arPow5 = {s1, s2, epi, eM , gc∗, z : 1 ≤ i ≤ 7},

P rPow5 = {z + 3 · s1|ep1
→ 1|a+ 1|b+ 1|s1, z + 2 · s2|ep3

→ 1|a+ 1|b,

z + s1|ep5
→ 1|a, z + s2|ep5

→ 1|b, z + s2|ep7
→ 1|t,

ep7 → 1|ept, eM → 1|gc∗}

∪ {3 · ep2k−1 → 1|ep2k + 2|es, ep2k|eM → 1|ep2k+1, 1 ≤ k ≤ 3}

V arPow5(0) = (0, 0, . . . , 0),

V arMult = {a, b, z∗, d, u, es},

P rMult = {z∗ + 1.5 · a|b → 2|a+ 1|s2, z∗ − (1 + d)|b → 1|d, d → 1|b

es + b|u → 1|eM , a+ b|u → 1|gc∗}

V arMult(0) = (0, 0, 0, 0, 1, 0).

The proposed ENP system is mainly composed of two parts: the 5-tuple genera-
tion part implemented in membrane Generate and the computation of the polyno-
mial’s value implemented in Computation membrane. When the Generate mem-
brane generates a 5-tuple, it transfers it to the Computation membrane and waits
for the computation to finish.
To illustrate the functioning of membrane Generate we will consider the gener-
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Generate

xi[5], 1 ≤ i ≤ 5, e1[1], ej [0], 2 ≤ j ≤ 7, ezk[0], 2 ≤ k ≤ 5, eri[0], 1 ≤ i ≤ 5

n[5], et[0], g[0], gc[0]

n → 1|n

et → 1|gc

1 + xi|e1 → 1|ezi, 2 ≤ i ≤ 5

1 + x1|e1 → 1|er1

−1 + g|e1 → 1|x1

1 + n+ x1|e1 → 1|x1

j · ej → 1|ej+1 + (j − 1)|et, 1 ≤ j ≤ 5

1− i+ et|eri−1
→ 1|xi, 2 ≤ i ≤ 5

g + (ezi + eri−1)|ei → 1|eri, 2 ≤ i ≤ 5

2− i+ n+ et|eri → 1|xi, 2 ≤ i ≤ 5

2 + et|er5 →
∑

5
i=1

1|xi + 1|n

g + er5|e6 → 1|gc

e6 → 1|e7
g + 2 · xi|e7 → 1|xi + 1|xc

i , 1 ≤ i ≤ 5

e7 → 1|ec
1

'

&

$

%

Compute

xc
i [0], 1 ≤ i ≤ 5,

ecj [0], 1 ≤ j ≤ 506,

t[0], g∗[0], ept[0], fQ[0],

enum[0], aux[0], ef [0]

g∗ +
∑

5
i=1

ai,k · xc
i + a6,k|ec

2k−1
→ 1|s1

3 · ec
2k−1

→ 1|ec
2k

+ 2|ep1

ec
2k

|ept → 1|ec
2k+1

g∗ − 2 · βkt|ec
2k+1

→ 1|aux+ 1|ef

1 ≤ k ≤ 252

2 · ec
505

→ 1|ef + 1|ec
506

aux|ef → 1|fQ

−fQ|g∗ → 1|enum

−(fQ + ec
506

) → 1|ef

enum+ fQ + ept → 1|gc

ec
506

→ 1|e1

'

&

$

%

Pow5

s1[0], s2[0], epi[0], 1 ≤ i ≤ 7,

eM [0], gc∗[0], z[0]

z + 3 · s1|ep1 → 1|a+ 1|b+ 1|s1

z + 2 · s2|ep3 → 1|a+ 1|b

z + s1|ep5 → 1|a

z + s2|ep5 → 1|b

3 · ep2k−1 → 1|ep2k + 2|es

ep2k|eM → 1|ep2k+1

1 ≤ k ≤ 3

z + s2|ep7 → 1|t

ep7 → 1|ept

eM → 1|gc∗'

&

$

%

Mult

a[0], b[0], z∗[0], d[0], u[1], es[0]

z∗ + 1.5 · a|b → 2|a+ 1|s2
z∗ − (1 + d)|b → 1|d

d → 1|b

es + b|u → 1|eM
a+ b|u → 1|gc∗

Figure 1. The ENP system from the proof of Theorem 4.1

ation of 3-tuples which is easier to follow. The construction can be extended to
generate tuples of any length by the method described above.
The Generate membrane for the 3-tuple case will have the following variables

and rules:

• Variables - the initial values are shown within the square brackets
(1) n[5] represents the current base minus one.
(2) x1[5], x2[5], x3[5] are the digits of the number in base n+ 1. The rightmost

digit is x1.
(3) e1[1], e2[0], e3[0], e4[0], e5[0] are variables used to control the execution flow

of the system.
(4) er1[0], er2[0], er3[0] correspond to the 3 digits and will store the number of

zero valued digits to the right of the corresponding digit (including itself).
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(5) ez2[0], ez3[0] correspond to the 3 digits and store whether the digit is zero
or not.

(6) et[0] is an auxiliary variable. Let nrz be the number of zeros to the right
of a digit needed in order to decrease or reset it. et will have at any given
time either the value 0 or nrz of the current digit.

(7) g[0] is an auxiliary variable which has the value 0 in all timesteps.
(8) gc[0] is an auxiliary variable which acts as a garbage collector. Its value is

not important and never used.

• The following 23 programs are used to generate 3-tuples

{ n → 1|n, et → 1|gc,

1 + x1|e1 → 1|er1, 1 + x2|e1 → 1|ez2, 1 + x3|e1 → 1|ez3,

−1 + g|e1 → 1|x1, 1− 2 + et|er1 → 1|x2, 1− 3 + et|er2 → 1|x3,

1 + n+ x1|e1 → 1|x1 2− 2 + n+ et|er2 → 1|x2 2− 2 + n+ et|er3 → 1|x3

g + (ez2 + er1)|e2 → 1|er2, g + (ez3 + er2)|e3 → 1|er3,

2 + et|er3 → 1|x1 + 1|x2 + 1|x3 + 1|n,

g + er3|er4 → 1|gc,

g + 2 · xi|e5 → 1|xi + 1|xci : 1 ≤ i ≤ 3,

e1 → 1|e2, 2 · e2 → 1|e3 + 1|et, 3 · e3 → 1|e4 + 2|et, e4 → 1|e5, e5 → 1|ec1}

The process of generating a 3-tuple takes 5 timesteps (7 timesteps for the 5-tuple
case and in general k+2 timesteps for tuples of length k). In the following we will
describe the computation in each timestep. However, the programs n → 1|n and
et → 1|gc which are always active will be omitted. n → 1|n ensures that the current
value of the base is never lost, while et → 1|gc always resets the value of et to zero
before any contributions are added.
The idea of the procedure is to process the digits from right to left. For each

digit, it is determined if the digit needs to be decremented. A digit needs to be
decremented if all the digits to its right are zero. The rightmost digit is always
decremented. Also, if a digit and all the digits to its right are zero, then it has
to be reset to the current value of the base minus 1, the value of n. When the
leftmost digit is reset, the base is incremented and the values of all digits have
to be incremented as well, in order to continue the generating process from the
greatest number (tuple) in the new base.

• Step 1: e1 = 1
• Variables: et = 0, er1 = 0, er2 = 0, er3 = 0, ez2 = 0, ez3 = 0.
• The active programs are:

(1) 1+x1|e1 → 1|er1, 1+x2|e1 → 1|ez2, 1+x3|e1 → 1|ez3 are used to test what
digits are zero. er1, ez2, ez3 are 1 if the corresponding digit is 0, because
the programs will not activate otherwise. Note that for the rightmost digit
(x1) the number of zeros to the right including itself (er1) is the same as
testing if the digit is 0. Therefore there is no ez1 variable.

(2) −1 + g|e1 → 1|x1 decrements the value of x1 regardless of its value.
(3) 1+n+ x1|e1 → 1|x1 resets the value of the rightmost digit x1 if it is zero.

It adds n+ 1 to x1 in order to compensate for the decrement of x1 when
it is 0.

(4) e1 → 1|e2 goes to the next step.

• Step 2: e2 = 1
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• Variables: et = 0, er1 ∈ {0, 1}, er2 = 0, er3 = 0, ez2 ∈ {0, 1}, ez3 ∈ {0, 1}.
• The active programs are:

(1) g+(ez2+er1)|e2 → 1|er2 is active, because of g, and computes the number
of zeros (including itself) to the right of the second rightmost digit er2.
Note that ez2 and er1 are consumed in this program and are not produced
by any other one. Thus, their value in the next timestep is 0.

(2) 1− 2 + et|er1 → 1|x2 decrements digit x2 if all digits to its right are zero,
er1 is 1. Because et is 0 the program activates only if the er1 is 1.

(3) 2 · e2 → 1|e3 + 1|et goes to the next step and computes et for the next
digit.

• Step 3: e3 = 1
• Variables: et = 1, er1 = 0, er2 ∈ {0, 1, 2}, er3 = 0, ez2 = 0, ez3 ∈ {0, 1}.
• The active programs are:

(1) g+(ez3+er2)|e3 → 1|er3 is active, because of g, and computes the number
of zeros (including itself) to the right of the third rightmost digit er3.

(2) 1− 3 + et|er2 → 1|x3 decrements digit x3 if all digits to its right are zero,
er2 is 2. Because et is 1 the program activates only if er2 is 2.

(3) 2 − 2 + n + et|er2 → 1|x2 resets the second rightmost digit if all digits
(including itself) to its right are 0, er2 is 2. Again, because et is 1 the
program activates only if er2 is 2.

(4) 3 · e3 → 1|e4 + 2|et goes to the next step and computes et for the next
digit.

• Step 4: e4 = 1
• Variables: et = 2, er1 = 0, er2 = 0, er3 ∈ {0, 1, 2, 3}, ez2 = 0, ez3 = 0.
• The active programs are:

(1) g + er3|e4 → 1|gc erases the value of er3 by transferring its value to the
garbage collector variable gc. er3 is not produced by any other program
at this timestep.

(2) 2 − 3 + n + et|er2 → 1|x2 resets the third rightmost digit if all digits
(including itself) to its right are 0, er3 is 3. Again, because et is 2 the
program activates only if er3 is 3.

(3) 2+et|er3 → 1|x1+1|x2+1|x3+1|n activates if the null 3-tuple is reached,
er3 is 3. It changes the base and increases all digits in order to obtain the
largest number (tuple) in the new base. Note that et is 2, therefore the
2 + et is divisible by 4, the sum of contribution coefficients.

(4) e4 → 1|e5 goes to the next step.

• Step 5: e5 = 1
• Variables: et = 0, er1 = 0, er2 = 0, er3 = 0, ez2 = 0, ez3 = 0.
• The active programs are:

(1) g + 2 · xi|e5 → 1|xi + 1|xci : 1 ≤ i ≤ 3 copy the generated 3-tuple to
another membrane for processing.

(2) e5 → 1|ec1 transfers the control to another membrane for processing.

It is easy to see that the construction can be extended to generate all tuples of
natural numbers of any length. When a new tuple is generated it is transferred to
the Compute membrane to be processed and it halts the generating process until
e1 is set to 1 again.
The computation part of the system is responsible for computing the value of a

polynomial Q corresponding to a generated 5-tuple.
First, we need a membrane to multiply the two natural numbers as a repeated

addition. This is implemented in Mult membrane. The best way to think of this
membrane is as of a system with inputs and outputs. Variables a and b are the
two inputs that must be multiplied and s2 from the Pow5 membrane is the output
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variable. The computation is started by setting es to a positive value, and is finished
when this value is transferred back to membrane Pow5 in variable eM . At every 2
timesteps the value of a is added to s2 by program z∗ + 1.5a|b → 2|a + 1|s2. The
addition is repeated b times in order to compute the product. b is decremented
by using d, which alternatively takes the values 0 and -1. When b becomes zero
programs es+b|u → 1|eM , which transfers back the value of es to eM , and a+b|u →
gc∗, which erases the value of a, become active.
The Pow5 membrane raises a value to its fifth power and uses theMult membrane

to perform the multiplication. This membrane can also be regarded as a system with
inputs and outputs. Variable s1 is the input, while the output is t. The computation
starts when ep1 becomes positive. The finish of the computation of the fifth power
of s1 is signaled by setting variable ept in the Compute membrane.
The square of the input value is computed by sending it as input to the Mult

membrane. This is implemented by program z + 3 · s1|ep1
→ 1|a+ 1|b+ 1|s1 which

also ensures that the value is not lost, but retained in variable s1. Also, variable es
is set by program 3 · ep1 → 1|ep2 + 2|es in order to start the multiplier membrane.
Variable ep2 and eM are used to block the execution of the programs until the
Mult membrane finishes. Please note that eM will receive a value greater than ep2,
because eM obtains its value from es, which in turn receives its value from ep1.
Thus, when the multiplication is finished, the value of eM will be twice the value
of ep2. The program ep2|eM → 1|ep3 is activated and ep3 becomes 1. Setting ep3
in turn triggers the next multiplication. Program z + 2 · s2|ep3

→ 1|a+ 1|b is used
to transfer the parameters to the Mult membrane. Since s2 contained the square
of the given input, the next multiplication will compute its 4th power. Again, the
multiplier is started by setting es by program 3 · ep3 → 1|ep4 + 2|es. The result is
again collected in s2 and variables ep4 and eM are used block the execution. When
the computation of the 4th power is finished ep5 is set by program ep4|eM → 1|ep5.
The last multiplication is performed at this stage between the value of s1, which
is the original one, and the value of s2 which contains its 4th power. The two
values are transferred again to the Mult membrane by programs z + s1|ep5

→ 1|a
and z + s2|ep5

→ 1|b. The end of the computation is signaled by setting eM which
together with ep6 blocked the execution of programs. ep6|eM → 1|ep7 is activated
when the 5th power of the initial input value is obtained. The result is send back to
the Compute membrane in variable t. The end of computation of membrane Pow5

is signaled by setting ept by program ep7 → 1|ept. Some final clean up is performed
by program eM → 1|gc∗ which erases eM .
In turn, the Pow5 membrane is used repeatedly by Compute membrane in order

to compute the successive terms of the polynomial in the form (4). The process
is the same as that used in the Pow5 membrane. First, the linear combination
∑5

i=1 ai,k · x
c
i+a6,k is computed and send to be raised to the fifth power by program

g∗+
∑5

i=1 ai,1 · x
c
i+a6,1|ec1 → 1|s1. g

∗ which is always zero ensures that the program
is active. The start of the computation in Pow5 is given by setting ep1 to a positive
value by program 3 · ec1 → 1|ec2 + 2|ep1. The final result is available when ept is
set again. Note that again ept will have a greater value ec2 because ept is equal to
ep1 which is twice the value of ec2. The result is stored in t, which is multiplied
by a constant β1 and added to the partial sum of the polynomial aux by program
g∗ − 2 · β1t|ec3 → 1|aux + 1|ef . This process is repeated for all m = 252 terms of
the polynomial. When the last term was computed and added to aux, ec505 is set.
Program 2 · ec505 → 1|ef + 1|ec506 is used to unlock aux|ef → 1|fQ which is used in
testing of the computed value of the polynomial agaist zero. Note that the program
is not active until 2 · ec505 → 1|ef + 1|ec506 is executed (all terms were computed),
because aux and ef are equal. If the value of the polynomial fQ is positive, it is
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transferred in variable enum where the ENP system’s results are collected. Some
clean up is done by programs −(fQ + ec506) → 1|ef and enum + fQ + ept → 1|gc
to set the values of all variables in membrane Compute to the initial ones. Also,
control is transferred back to the Generate membrane by ec506 → 1|e1 in order to
start generating the next 5-tuple.
The proposed construction uses only polynomials of degree 1 with at most 6

variables. Also, the number of membranes has been reduced to 4 due to repeated
reuse of the Pow5 and Mult membranes. Thus, the proof is complete. �

Parts of the proposed membrane system, Generate membrane and Pow5 mem-
brane, were simulated and verified using SimP, an ENP systems simulator proposed
in [4].

5. Conclusions

In the proof of Theorem 4.1 a method of reusing membranes was used in order to
reduce the number of membranes in the system. It is, however, important to notice
that it also constrained the system to perform the most important computations in
a serial manner. In practice, it may be more convenient to have more membranes
that compute in parallel, because it allows the underlying runtime environment
to perform optimizations based on available hardware and software platform. It
is also important to note that there are more rules dedicated to program control
flow in the membrane system from Theorem 4.1 than there are in the one from
Theorem 4 in [13].
Another important observation is that although computation can be done with

polynomial production functions of degree 1, in some cases it is more convenient to
use higher degree polynomials. However, most rules used for program flow control
are of degree 1 and also, most rules with higher degree polynomial productions
functions have few terms. These observations are relevant for optimizing the data
structures and algorithms used for simulating ENP systems.
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