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Abstract— In this paper, we study the translational and
rotational (SE(N)) invariance properties of locally interacting
multi-agent systems. We focus on a class of networked systems,
in which the agents have local pairwise interactions, and the
overall effect of the interaction on each agent is the sum of the
interactions with other agents. We show that such systems are
SE(N)-invariant if and only if they have a special, quasi-linear
form. The SE(N)-invariance property, sometimes referred to
as “left invariance”, is central to a large class of kinematic
and robotic systems. When satisfied, it ensures independence
to global reference frames. In an alternate interpretation, it
allows for integration of dynamics and computation of control
laws in the agents’ own reference frames. Such a property is
essential in a large spectrum of applications, e.g., navigation
in GPS-denied environments. Because of the simplicity of the
quasi-linear form, this result can impact ongoing research on
design of local interaction laws. It also gives a quick test to
check if a given networked system is SE(N)-invariant.

I. INTRODUCTION

In this paper we present necessary and sufficient condi-
tions for a multi-agent system with pairwise interactions to
be invariant under translations and rotations of the inertial
frame in which the dynamics are expressed (i.e. SE(N)
invariant). This kind of invariance is important because it
allows agents to execute their control laws in their body
reference frame [3], [2], [4], using information measured
in their body reference frame, without effecting the global
evolution of the system. This is critical for any scenario
where global information about an agent’s reference frame
is not readily available, for example coordinating agents
underground, underwater, inside of buildings, in space, or
in any GPS denied environment [8], [1], [13].

We assume that the agents are kinematic in N-dimensional
Euclidean space, and their control laws are computed as
the sum over all neighbors of pairwise interactions with the
neighbors. We prove that the dynamics are SE(N) invariant
if and only if the pairwise interactions are quasi-linear,
meaning linear in the difference between the states of the
two agents, multiplied by a nonlinear scalar gain. This result
can be used as a test (does a given multi-agent controller
require global information?), or as a design specification (a
multi-agent controller is required that uses only local infor-
mation, hence only quasi-linear pairwise interactions can be
considered). It can also be used to test hypothesis about local
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interaction laws in biological (e.g., locally interacting cells)
and physical systems.

We prove the result for agents embedded in Euclidean
space of any dimension, and the result holds for arbitrary
graph topologies, including directed or undirected, switching,
time varying, and connected or unconnected. We show that
many existing multi-agent protocols are quasi-linear and thus
SE(N) invariant. Examples include the interactions from
the classical n-body problem [12] and most of the existing
multi-agent consensus and formation control algorithms, e.g.,
[16], [10], [11], [18], [9], [5], [7]. In particular, explicit
consensus algorithms implemented using local information
in the agents’ body frames [13] satisfy the SE(N) invariance
property, as expected. We also show that some multi-agent
interaction algorithms, such as [6], are not SE(N) invariant,
and therefore cannot be implemented locally in practice.
Finally, we consider a sub-class of quasi-linear (and therefore
SE(N) invariant) pairwise interaction systems, and show
that they reach a consensus, using the graph Laplacian to
represent the system dynamics and the typical LaSalle’s
invariance analysis to show convergence.

With a few exceptions [15], [17], [14], [13], the problem
of invariance to global reference frames was overlooked in
the multi-agent control and consensus literature. In [15],
the authors discuss invariance for the particular cases of
SE(2) and SE(3) actions, and with particular focus on
virtual structures. Rotational and translational invariance are
also discussed for a particular class of algorithms driving a
team of agents to a rigid structure in [17]. The problem of
invariance to group actions in multi-agent systems was very
recently studied in [14], where the authors present a general
framework to find all symmetries in a given second-order
planar system. The authors’ main motivation is to determine
change of coordinates transformations that align the system
with the symmetry directions and thus aid in stability analysis
using LaSalle’s principle. This paper is complementary to
our work, in the sense that the authors start from a system
and find invariants, while in our case we start from an
invariance property and find all systems satisfying it. Our
results hold for any (finite) dimensional agent state space.
Finally, our characterization of invariance is algebraic, and
as a result does not require any smoothness assumptions on
the functions modeling the interactions. As a result, it can
be used for a large class of systems, including discrete-time
systems.

The rest of the paper is organized as follows. Section II
defines necessary concepts and states the main result. The
main result is proved in Sections III, IV, and V. Section VI
considers convergence to consensus in a special class of



systems. Section VII analyzes the SE(N) invariance of
several well-known systems, and conclusions are given in
Section VIII.

II. DEFINITIONS AND MAIN RESULT

In this section, we introduce the notions and definitions
used throughout the paper. The main result of the paper is
stated at the end of the section.

For a set S, we use |S| to denote its cardinality. The
canonical basis for the Euclidean space of dimension N ,
denoted by RN , is e1, . . . , eN . We use IN to denote the
N ×N identity matrix. The special orthogonal group acting
on RN is denoted by SO(N). Throughout the paper, the
norm ‖·‖ refers to the Euclidean norm.

Given a directed graph G, we use V (G) and E(G) ⊆
V (G) × V (G) to denote its sets of nodes and edges, re-
spectively. Given a node i ∈ V (G), Ni stands for the set
of incoming neighbors of i, i.e. Ni = {j ∈ V (G)|(i, j) ∈
E(G)}.

Let T = {f : RN → RN} be the set of all transformations
acting on RN . T is a monoid with respect to function
composition and is called the transformation monoid. Let
A be a sub-semigroup of T . The centralizer (or commuter)
of A with respect to T is denoted by CT (A) and is the set
of all elements of T that commute with all elements of A,
i.e. CT (A) = {f ∈ T |fg = gf,∀g ∈ A}. The centralizer
CT (A) is a submonoid of T and can be interpreted as the
set of transformations invariant with respect to all transfor-
mations in A. In other words, action of f ∈ CT (A) on RN
and then transformed by g ∈ A is the same as the action of
f on the transformed space g(RN ).

A function f : RN×· · ·×RN → RN is said to be SE(N)
invariant if for all R ∈ SO(N) and all w ∈ RN the following
condition holds:

Rf(x1, . . . , xp) = f(Rx1 + w, . . . , Rxp + w) (1)

Definition 2.1 (Pairwise Interaction System): A
continuous-time pairwise interaction system is a double
(G,F ), where G is a graph and F = {fij | fij : RN →
RN , (i, j) ∈ E(G)} is a set of functions associated to its
edges. Each i ∈ V (G) labels an agent, and a directed edge
(i, j) indicates that node i receives information from node
j. The dynamics of each agent are described by

ẋi =
∑
j∈Ni

fij(xi, xj) (2)

where fij defines the influence (interaction) of j on i.
For each agent i ∈ V (G), we use Si(x1, . . . , x|V (G)|) =∑
j∈Ni

fij(xi, xj) to denote the total interaction on agent i.
Remark 2.2: A discrete-time pairwise interaction system

can be defined similarly by replacing differentiation (ẋi)
with one-step difference (∆xi(k) = xi(k + 1) − xi(k))
in the formula above. Note that we do not assume any
symmetry properties of the interaction functions fij , i.e., fij
may be different from fji. Also, the graph representing the
communication topology of the multi-agent system can be

switching (i.e. state-dependent, or time-varying) and need
not be connected.

Definition 2.3 (SE(N) Invariance): A pairwise interac-
tion system (G,F ) is said to be SE(N) invariant if, for
all i ∈ V (G), the total interaction functions Si are SE(N)
invariant.

Definition 2.4 (Quasi-linear): A function f : RN → RN
is said to be quasi-linear if there is a function k : R≥0 →
R such that f(x) = k(‖x‖)x, for all x ∈ RN. A pairwise
interaction system (G,F ) is said to be quasi-linear if the
total interaction Si of each agent i is a sum of quasi-linear
functions. Formally, for all i ∈ V (G):

Si =
∑
j∈Ni

kij(‖xj − xi‖)(xj − xi), for N ≥ 3, (3)

Si =
∑
j∈Ni

(
k

(1)
ij (‖xj − xi‖)I2

+ k
(2)
ij (‖xj − xi‖)J2

)
(xj − xi), for N = 2,

where kij , k
(1)
ij , k

(2)
ij : R≥0 → R for all j ∈ Ni are scalar

gain functions and J2 =

[
0 1
−1 0

]
.

The difference between the cases N = 2 and N ≥
3 arises from the fact that SO(2), the group of planar
rotations, is Abelian, while SO(N) for N ≥ 3 is not (i.e.,
rotation matrices in 3 or more dimensions do not, in general,
commute). To simplify the notation, we will denote the gain

matrix k(1)
ij (·)I2 + k

(2)
ij (·)J2 =

[
k

(1)
ij (·) k

(2)
ij (·)

−k(2)
ij (·) k

(1)
ij (·)

]
also by

kij(·). In most cases, this convention will not pose any
problems because the gain matrix commutes with SO(2).
When it is necessary, we will consider the case N = 2
separately.

Note that the set of all quasi-linear functions is a sub-
monoid of T , which will be denoted by QL(N).

The main result of this paper can be simply stated as
follows:

Theorem 2.5: A pairwise interaction system is SE(N)
invariant if and only if it is quasi-linear.

The main ingredient of the proof is that the centralizer
of SO(N) with respect to T is the set of all quasi-linear
functions QL(N). The proof, which uses an induction
argument over N , is provided in Sec. IV . Building on
this result, we proceed to show in Sec. V that the local
interaction functions which arise from SE(N) invariant
pairwise interaction systems have a special form, e.g. these
functions are quasi-linear functions plus some affine terms,
and the sum of all the affine terms is zero. This in turn
implies the main result.

III. RE-CASTING THE MAIN RESULT

This section rephrases the main result of the paper (Theo-
rem 2.5) in terms of total interaction functions, independent
of a notion of dynamics, which has two benefits: (1) it greatly
expands the applicability of the result to other cases, and (2)



we do not need to assume any smoothness conditions on the
functions, such as continuity or differentiability.

Theorem 3.1: Let S(x1, . . . , xp) =
∑p
j=1,j 6=i hj(xi, xj),

where hj : RN × RN → RN and p ≥ 1. Then S is
SE(N) invariant if and only if it is the sum of quasi-linear
functions in xj − xi, j ∈ {1, . . . , p}, j 6= i, that is S =∑p
j=1,j 6=i kj(‖xj − xi‖)(xj − xi), where kj : R≥0 → R.

Proof: Let S(x1, . . . , xp) =
∑p
j=1,j 6=i hj(xi, xj) be

an SE(N) invariant function, it follows from Lemma 5.3
(which is stated and proved below) that there exists kj(·) for
all j ∈ {1, . . . , p}, j 6= i, such that

S =

p∑
j=1,j 6=i

(hj(xi, xi) + kj(‖xj − xi‖)(xj − xi))

=

p∑
j=1,j 6=i

hj(xi, xi) +

p∑
j=1,j 6=i

kj(‖xj − xi‖)(xj − xi)

=

p∑
j=1,j 6=i

kj(‖xj − xi‖)(xj − xi)

The proof is now complete.
Remark 3.2: Notice that Thm. 3.1 is a statement about

the total interaction functions and not about each local
interaction functions, e.g. it does not say that the local
interactions functions hj(xi, xj) are quasi-linear in xj − xi.
This fact is shown explicitly in Lemma 5.3 which also proves
that all affine terms hj(xi, xi) cancel each other out.

Thm. 2.5 follows immediately from Thm. 3.1, since we
can apply Thm. 3.1 on the total interaction function Si of
any agents i.

Remark 3.3: Notice that the presented result does not
concern the system stability or asymptotic properties of the
system trajectories, since SE(N) invariance is a property
essentially about reference frames. Also, because of the same
considerations, our results hold true for the case of switching
network topologies. We investigate the stability of a subclass
of these systems in Sec. VI, which we prove converge to a
consensus state.

Remark 3.4: Lastly, we want to draw attention to the fact
that the result holds because the total interaction functions are
the sum of local pairwise interactions between neighboring
agents. In case of general total interaction functions which
do not have this additive form, the result does not hold.
As a counter-example, consider the total interaction function
S(x1, x2, x3) = ‖x2 − x1‖ (x3 − x2). We can easily see
that S is SE(N) invariant, but is not a sum of quasi-linear
functions.

IV. CHARACTERIZING THE CENTRALIZERS OF SO(N)

In this section, we prove that functions which commute
with SO(N) are quasi-linear. First, we establish the claim
for N = 2, which is treated separately. Some of the proofs
in this section are omitted due to brevity.

Proposition 4.1: The centralizer of SO(2) with respect
to T is the submonoid {(k1(‖x‖)I2 + k2(‖x‖)J2)x}, where

k1, k2 : R≥0 → R and J2 =

[
0 1
−1 0

]
.

Before we proceed with the case N ≥ 3, we provide two
lemma that are used in subsequent proofs. The following
lemma shows the intuitive fact that the only vector invariant
under all rotations is the null vector.

Lemma 4.2: Let x ∈ RN . If Rx = x for all R ∈ SO(N),
N ≥ 2, then x = 0.

Lemma 4.3: Let f = (f1, . . . , fN ) : RN → RN such that
f commutes with all elements of SO(N), then xT f(x) =
‖x‖ f1(‖x‖ e1).

Proof: Let x ∈ RN and R ∈ SO(N) such that
Rx = ‖x‖ e1 or equivalently x = RT ‖x‖ e1. It follows that
f(x) = f(RT ‖x‖ e1) = RT f(‖x‖ e1). Finally, xT f(x) =
xTRT f(‖x‖ e1) = (Rx)T f(‖x‖ e1) = ‖x‖ e1f(‖x‖ e1) =
‖x‖ f1(‖x‖ e1).

The following three lemma establish the case N = 3
which forms the base case of the induction argument used
in the proof of Thm. 4.7.

Lemma 4.4: Let u = (u1, u2, u3) ∈ R3 such that ‖u‖ = 1

and u 6= ±e1, then Ru =


u1 0 −

√
u2

2 + u2
3

u2
u3√
u2
2+u2

3

u1u2√
u2
2+u2

3

u3 − u2√
u2
2+u2

3

u1u3√
u2
2+u2

3


is a proper rotation matrix in SO(3).

Proof: It follows from the definition of SO(3).
Lemma 4.5: Let f = (f1, f2, f3) : R3 → R3 such that f

commutes with all elements of SO(3), then

f1(x) = −f1(−x1,−x2, x3) (4)
f1(x) = −f1(−x1, x2,−x3) (5)
f2(x) = f1(x2,−x1, x3) (6)
f3(x) = f1(x3, x2,−x1) (7)

where x = (x1, x2, x3) ∈ R3.
Proof: The above relationships can be obtained using

90◦ rotation matrices around the axes e1, e2 and e3.

Proposition 4.6: The centralizer of SO(3) with respect to
T is the monoid of quasi-linear functions QL(3).

Proof: Let x = (x1, x2, x3) ∈ R3 such that x 6= αe1,
α ∈ R and f = (f1, f2, f3) : R3 → R3. Let u = x

‖x‖
and Ru as in Lemma 4.4, we have x = Ru ‖x‖ e1 and
ui = xi

‖x‖ . Using the commutation property we obtain f(x) =

f(Ru ‖x‖ e1) = Ruf(‖x‖ e1) and writing the equation for
f1, it follows that

f1(x) = u1f1(‖x‖ e1)−
√
u2

2 + u2
3 f3(‖x‖ e1) (8)

Using the equality from Lemma 4.5, Eq. (7), we have
f3(‖x‖ , 0, 0) = f1(0, 0,−‖x‖). On the other hand, it
follows from Eq. (4) that f1(0, 0, α) = −f1(0, 0, α), which
implies f1(0, 0, α) = 0 for all α ∈ R. It follows that
f3(‖x‖ e1) = 0 for all x ∈ R3, x 6= αe1 and α ∈ R. Thus,
Eq. (8) can be simplified to

f1(x) = x1
f1(‖x‖ e1)

‖x‖
= x1k(‖x‖) (9)

where k : R≥0 → R is k(α)
∆
= f1(αe1)

α , α ≥ 0. The general
form of f(x) = k(‖x‖)x is obtained using Eq. (6) and (7).



The case x = 0 follows easily from Lemma 4.2, because
it implies f(0) = 0. The remaining case x = αe1 is trivial;
f(αe1) = [f1(αe1) f2(αe1) f3(αe1)]T = [α f1(αe1)

α 0 0]T =
k(‖x‖)x, where f2(αe1) = 0 and f3(αe1) = 0 follow from
Eq. (6), (5) and Eq. (7), (4), respectively.

Theorem 4.7: The centralizer of SO(N) with respect to
T is the monoid of quasi-linear functions QL(N), for all
N ≥ 3.

Proof: The proof follows from an induction argument
with respect to N . The base case is established by Prop. 4.6.
To simplify the notation, given a vector x = (x1, . . . , xN ) we
will denote by xi:j , i < j, the sliced vector (xi, . . . , xj) ∈
Rj−i+1.

The induction step: Let x ∈ RN+1, x 6= 0, and R1 =[
R 0
0 1

]
, R2 =

[
1 0
0 R

]
, where R ∈ SO(N). Using R1,

it follows that Rf1:N (x1:N , xN+1) = f1:N (Rx1:N , xN+1).
Applying the induction hypothesis, we obtain

f1:N (x1:N , xN+1) = k1(‖x1:N‖ , xN+1)x1:N (10)

Similarly, using R2 we have Rf2:N+1(x1, x2:N+1) =
f2:N+1(x1, Rx2:N+1) and obtain

f2:N+1(x1, x2:N+1) = k2(‖x2:N+1‖ , x1)x2:N+1 (11)

Equating Eq. (10) and (11) for f2 and assuming w.l.o.g. x2 6=
0, we get a constraint between the two gains

k2(‖x2:N+1‖ , x1) = k1(‖x1:N‖ , xN+1) (12)

Thus, we obtain fN+1 in terms of the gain k1 by using the
last equality from Eq. (11) and Eq. (12) to substitute k2 for
k1

fN+1(x1, . . . , xN+1) = k1(‖x1:N‖ , xN+1)xN+1 (13)

Finally, putting all the components of f obtained from
Eq. (10) and (13) together and left multiplying it by xT , we
get

xT f(x) =

N+1∑
i=1

x2
i k1(‖x1:N‖ , xN+1)

= ‖x‖2 k1(‖x1:N‖ , xN+1) = ‖x‖ f1(‖x‖ e1)

where the last equality follows from Lemma 4.3. It fol-
lows that k1(‖x1:N‖ , xN+1) = f1(‖x‖e1)

‖x‖
∆
= k(‖x‖). Thus,

f(x) = k(‖x‖)x, which concludes the proof.

V. SE(N) INVARIANT FUNCTIONS

In this section, we use the result from the previous section
that CT (SO(N)) = QL(N) in order to characterize SE(N)
invariant functions which arise from pairwise interaction
systems.

Proposition 5.1: A function h(x1, x2) : RN ×RN → RN
is SE(N) invariant if and only if h is quasi-linear in x2−x1.

Proof: Trivially, a quasi-linear function h(x1, x2) =
k(‖x2 − x1‖)(x2 − x1) is SE(N) invariant. Conversely,
if R = IN and w = −x2, then h(x1, x2) = h(x1 −

x2, x1 − x2) = h(x1 − x2, 0)
∆
= ĥ(x2 − x1). Let x ∈ RN

and R ∈ SO(N), it follows that Rĥ(x) = Rh(−x, 0) =
h(−Rx, 0) = ĥ(Rx). Since ĥ commutes with all elements
of SO(N) it follows that it is quasi-linear. Thus we have
h(x1, x2) = ĥ(x2 − x1) = k(‖x2 − x1‖)(x2 − x1).

Lemma 5.2: Let h1, h2 : RN × RN → RN , then
S(x0, x1, x2) = h1(x0, x1) + h2(x0, x2) is an SE(N)
invariant function if and only if there exists k1(·) and k2(·)
such that for all x0, x1, x2 ∈ RN we have

h1(x0, x1) = h1(x0, x0) + k1(‖x1 − x0‖)(x1 − x0) (14)
h2(x0, x2) = h2(x0, x0) + k2(‖x2 − x0‖)(x2 − x0) (15)

and h1(x0, x0) + h2(x0, x0) = 0.
Proof: It is easy to show that if S is the sum of

functions satisfying Eq. (14), (15) and the zero-sum con-
straint, then S is SE(N) invariant. Conversely, let f1(a, b) =
h1(a, b)+h2(a, a) and f2(a, b) = h1(a, a)+h2(a, b), where
f1, f2 : RN × RN → RN and a, b ∈ RN . It follows
immediately that f1 and f2 are SE(N) invariant, because
h1(x0, x1) + h2(x0, x2) is SE(N) invariant. Therefore, we
have by Prop. 5.1 that f1(a, b) = k1(‖b− a‖)(b − a) and
f2(a, b) = k2(‖b− a‖)(b − a). Choosing a = b in any of
the previous two equations, we obtain h1(a, a) +h2(a, a) =
0. Finally, we obtain h1(a, b) = −h2(a, a) + f1(a, b) =
h1(a, a) + k1(‖b− a‖)(b − a) and h2(a, b) = −h1(a, a) +
f2(a, b) = h2(a, a) + k2(‖b− a‖)(b− a).

Lemma 5.3: Let h1, . . . , hp : RN ×RN → RN , p ∈ Z≥2,
then S(x0, . . . , xp) =

∑p
i=1 hi(x0, xi) is an SE(N) invari-

ant function if and only if there exists ki(·), i ∈ {1, . . . p},
such that for all x0, x1, . . . , xp ∈ RN we have

hi(x0, xi) = hi(x0, x0) + ki(‖xi − x0‖)(xi − x0) (16)

for all i ∈ {1, . . . , p} and
p∑
i=1

hi(x0, x0) = 0 (17)

Proof: We will prove the lemma by induction with re-
spect to p. The base step p = 2 is established by Lemma 5.2.
For the induction step, we assume that Lemma 5.3 holds for
p and we must show that it also holds for p+ 1. As before,
quasi-linearity trivially implies SE(N) invariance.

Let xp+1 = x1 and define the function
h′1(x0, x1) = h1(x0, x1) + hp+1(x0, x1). Clearly
h′1(x0, x1) +

∑p
i=2 hi(x0, xi) is an SE(N) invariant

function and by the induction hypothesis we have for all
i ∈ {2, . . . , p}

hi(x0, xi) = hi(x0, x0) + ki(‖xi − x0‖)(xi − x0)

h′1(x0, x1) = h′1(x0, x0) + k′1(‖x1 − x0‖)(x1 − x0)

= h1(x0, x0) + hp+1(x0, x0)

+ k′1(‖x1 − x0‖)(x1 − x0)

and h′1(x0, x0) +
∑p
i=2 hi(x0, x0) =

∑p+1
i=1 hi(x0, x0) = 0.

Similarly, let xp+1 = x2 and define h′2(x0, x2) =
h2(x0, x2) + hp+1(x0, x2). Using the same argument
as before, we obtain h1(x0, x1) = h1(x0, x0) +



k1(‖x1 − x0‖)(x1 − x0). Substituting h1 in the expression
of h′1 and solving for hp+1 we have

hp+1(x0, xp+1) = h′1(x0, xp+1)− h1(x0, xp+1)

= hp+1(x0, x0) + kp+1(‖xp+1 − x0‖)

This concludes the proof.

VI. STABILITY OF SE(N) INVARIANT SYSTEMS

In this section, we study the stability of SE(N) invariant
pairwise interaction systems, showing that a certain subclass
of such systems converge to a consensus state (one in
which all agents’ states are equal). Because of Thm. 2.5,
the stability of such systems can be reduced to a problem
involving only scalar gain functions. In the following, we
provide a sufficient condition for stability by assuming some
additional constraints on the scalar gains.

Let (G,F ) be a continuous-time pairwise interaction sys-
tem, where each fij ∈ F is quasi-linear. Let n = |V (G)| and

x =

x1

...
xn

 be the stacked state vector. Using this notation,

the system dynamics may be written in the following form:

ẋ = −(L⊗ IN )x

where ⊗ denotes the Kronecker product and L is the n× n
weighted Laplacian matrix of G, i.e. for all i, j ∈ {1, . . . , n}

Lij =


∑

p∈Ni
kip(‖xi − xp‖) for i = j

−kij(‖xi − xj‖) for i 6= j and (i, j) ∈ E(G)

0 otherwise

Also, define the set of a consensus states as follows
Definition 6.1: The states in the set

Ω = {x|xi = xj ,∀i, j ∈ V (G)}

are called consensus states, and if x(t) → Ω as t → ∞ we
say the system converges to a consensus.

Theorem 6.2: Let (G,F ) be a continuous pairwise inter-
action system such that G is connected and time-invariant,
and each fij ∈ F is quasi-linear. If kij(α) = kji(α),
kij(α) > 0, α ≥ 0, and kij are continuous, then x converges
to a point in {x|xi = xj ,∀i, j ∈ V (G)}.

Proof: Consider the Lyapunov function V (x) =
1
2

∑
(i,j)∈E(G) ‖xi − xj‖

2
+ x̄T x̄, where x̄ = 1

n

∑n
k=1 xk.

By construction, V is positive definite. Next we show that it
is radially unbounded. Let x ∈ RNn be such that ‖x‖ → ∞.
There exists an agent i ∈ {1, . . . , n} such that ‖xi‖ → ∞,
xi ∈ RN , and we have the following inequality

‖xi‖ = ‖xi − x̄ + x̄‖ =

∥∥∥∥∥ 1

n

n∑
j=1

(xi − xj) + x̄

∥∥∥∥∥
≤ 1

n

n∑
j=1

‖xi − xj‖+ ‖x̄‖

The inequality shows that either ‖x̄‖ → ∞, in which case
V (x)→∞, or there exists i, j such that ‖xi − xj‖ → ∞. In
case i and j are adjacent, (i, j) ∈ E(G), then V (x) → ∞.
Otherwise, there exists a path k1, . . . , km, with k1 = i and

km = j, because G is assumed to be connected. Thus, we
have

‖xi − xj‖ =

∥∥∥∥∥
m∑
l=1

xkl − xkl+1

∥∥∥∥∥ ≤
m∑
l=1

∥∥xkl − xkl+1

∥∥
which shows that there exists (kl, kl+1) ∈ E(G) such that∥∥xkl − xkl+1

∥∥→∞, which in turn implies that V (x)→∞.
Next, we proceed to compute the derivative of x̄

˙̄x =
1

n

n∑
i=1

ẋi =
1

n

n∑
i=1

∑
j∈Ni

kij(‖xj − xi‖)(xj − xi)

=
1

n

∑
(i,j)∈E(G)

(kij(‖xi − xj‖)− kji(‖xi − xj‖))(xj − xi)

= 0

We are now ready to compute the total derivative of V ,

V̇ (x) =

=

n∑
p=1

∂V

∂xp

T

ẋp =
1

2

n∑
p=1

 ∂

∂xp

 ∑
(i,j)∈E(G)

‖xi − xj‖2
T

ẋp

=
1

2

n∑
p=1

 ∑
j∈Np

2(xp − xj)

T  ∑
j∈Np

kpj(‖xp − xj‖)(xj − xp)


= −xT (L⊗ IN )x

Because kij(·)’s are always positive, it follows that L is
diagonally dominant and thus positive semi-definite. This
in turn implies that V̇ is negative semi-definite. The solu-
tions of the equation V̇ (x) = −xT (L ⊗ IN )x = 0 are
also the equilibrium points of the system, i.e. they satisfy
(L ⊗ IN )x = 0. Thus, by LaSalle’s invariance principle x
converges to the invariant set {x|ẋ = 0}, which in this case is
Ω = {x|xi = xj ,∀i, j ∈ V (G)}, hence the system converges
to a consensus.

The result can be extended straightforwardly to switching
graph topologies using known methods, e.g., [16]. We con-
jecture that an SE(N) invariant pairwise multi-agent system
reaches a consensus if and only if it takes on this form,
although the proof is left for future work.

VII. ANALYSIS OF EXISTING CONTROLLERS

In this section we consider several existing pairwise multi-
agent systems that have been studied in the literature. We
show that many of these are SE(N) invariant, although
we also show an example that is not, and one that is only
SE(N) invariant under certain conditions. These results are
summarized in Table I.

The first example in Tab. I was proposed in [9] to model
swarm aggregation and is a quasi-linear system because
g(·) is a quasi-linear function. The second [6], third [11]
and fourth [18] examples define the agents’ dynamics based
on potential functions. The example from [6] is not quasi-
linear, because the potential function whose gradient is used
for navigation depends explicitly on the agents’ states, as
opposed to distances between agents’ states, and thus its
gradient cannot be a quasi-linear function. We can conclude
that the multi-agent system in the second example is not
SE(N) invariant. On the other hand, the example from [18]



TABLE I: The table contains examples of networked systems
that are quasi-linear, except for the second example and
possibly the fourth. It follows that the quasi-linear systems
below are also SE(N) invariant by Thm. 2.5. All systems
have n agents and for each agent i ∈ {1, . . . , n}, we denote
by xi its state. The maps VI , Vh, Vij : R≥0 → R represent
potential functions. In the example from [11], x̃p represents
the state of a virtual leader p ∈ {1, . . . ,m}.

System dynamics Refe-
rence

Quasi-
linear?

ẋi =

n∑
j=1

g(xi − xj)

g(y) = −y
(
a− b exp

(
−
‖y‖2

c

))
[9] Yes

ẋi = −α∇xi

(
γi(x)

(γi(x)k + βi(x))1/k

) [6] No

ẍi = −
n∑

j 6=i

∇xiVI(‖xi − xj‖)

−
m−1∑
k=0

∇xiVh(‖xi − x̃k‖), 1 ≤ i ≤ n

¨̃xp = f̃p(xj , x̃k, ẋj , ˙̃xk), 0 ≤ p ≤ m

[11] Yes
or no.

ẍi = −
∑
j∈Ni

∇xiVij(‖xi − xj‖)−
∑
j∈Ni

(ẋi−ẋj)
[18] Yes.

ẋi = ui or xi(k + 1) = xi(k) + ui

ui =
∑
j∈Ni

aij(xi − xj), aij ∈ R or

ui =
∑
j∈Ni

(‖xi − xj‖2−dij)(xi−xj), dij ∈ R

[16],
[10],
[5]

Yes

ẍi =
1

mi

n∑
j=1,j 6=i

Gmimj

‖xi − xj‖3
(xj − xi)

[12] Yes

is quasi-linear, because the gradients of Vij(·) are quasi-
linear functions. In the fourth example, the system is quasi-
linear if and only if the dynamics of the virtual leaders
f̃p are sums of quasi-linear functions, 1 ≤ p ≤ m. In
the fifth example, we have consensus and formation control
protocols from [16], [10] and [5]. It is easy to see that
these systems are quasi-linear. The last example shows a
system of n point masses which interact with each other
due to gravity. This system is also quasi-linear and thus
exhibits SE(N) invariance, a fact which is well known in
Hamiltonian mechanics [12].

VIII. CONCLUSIONS

In this paper we present the notion of SE(N) invari-
ance, invariance to translations and rotations, in the case
of multi-agent systems. Systems which have this property
are independent of global reference frames, which means
they can be implemented using information measured in

each agent’s body reference frame, and executed in each
agent’s body reference frame, without effecting the global
evolution of the system. This is of critical importance in
the context of applications where information about a global
reference frame cannot be obtained, for example in GPS-
denied environments. The main contribution of the paper
is to fully characterize pairwise interaction systems that are
SE(N) invariant. We show that pairwise interaction systems
are SE(N) invariant if and only if they have a special quasi-
linear form. Because of the simplicity of the quasi-linear
form, this result can impact ongoing research on design of
local interaction laws. The result can also be used to quickly
check if a given networked system is SE(N) invariant.
Lastly, we describe a subset of SE(N) invariant pairwise
interaction systems that reach a consensus. We prove this
result by exploiting their quasi-linear structure.
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