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Abstract— A multi-agent control architecture for swarm
robotics applications which includes an innovative human-
swarm interface is proposed. The architecture is designed to
allow an operator to monitor and guide a robotic swarm to
accomplish its missions. The system is composed of three types
of agents, a graphical user interface agent, and a pair of a
local and a social agent for each robot in the swarm. The
local agent implements low level robot-specific functionalities
like movement, obstacle avoidance and localization. The control
algorithm is implemented in the social agent and is based
on an adapted distributed version of the Particle Swarm
Optimization technique. An original method, Gravity Points
Method, for representing goals which are used by the human-
swarm interface is also proposed. Experimental results using
simulated e-puck robots are presented and directions for further
developments are given.

I. INTRODUCTION

Real-world environments are dynamic and unstructured.

Typical tasks for collective robotic systems working in such

environments include searching for targets and transportation

of various loads. A multi-agent based control architecture

which addresses these kind of missions is proposed. This

architecture is named Chidori which literally means “One

Thousand Birds” in Japanese [1], in order to suggest its

primary application area, that is , swarm robotics. Each

robot does not posses cognition, but only a reactive behavior.

On the other hand, the swarm as an entity is a intelligent

system due to its emergent behavior. Chidori implementation

is designed as a multi-agent system in order to be scalable,

flexible and extensible. A human-swarm interface was also

integrated in the architecture to allow a human expert to

guide the multi-robot system to accomplish the tasks in such

a way which does not limit the intelligent emergent behavior

of the swarm.

An adapted distributed Particle Swarm Optimization

(PSO) inspired algorithm is used in the control architecture.

Previous work of the authors include experiments with a

PSO inspired algorithm using Khepera III robots [2]. Chidori

architecture was presented in an earlier designing stage in

[1] where the technologies involved in the implementation

were also presented. Related work is presented in [3] where

the authors describe an adapted PSO inspired algorithm for

robotic swarms and discuss the differences between abstract

particles and robots and the effects of physical laws and

properties on PSO algorithm. A distributed PSO version

is presented in [4]. Another approach to swarm control

is physicomimetics (artificial physics), which uses virtual

forces to achieve desired configurations ([5]). The states of

the swarm are computed by minimizing the virtual system

potential energy. This framework was also used to integrate

human-swarm interaction [6]. The proposed Chidori architec-

ture is designed to be a distributed control architecture that

supports human-swarm interaction. Besides the structure of

the architecture itself, the main contribution of the paper is

the Gravity Points Method (GPM) described in Sect. III-

B which was designed to allow an operator to guide a

swarm through a swarm-user interface. The GPM method is

a general technique to define goals and can be well integrated

with the PSO technique.

II. CHIDORI ARCHITECTURE

A. Overview

The proposed cognitive control architecture (Fig. 1) for a

swarm of robots is designed as a multi-agent system. Three

types of agents are defined in order to provide a distributed

control system and a human-swarm interface. Each robot in

the swarm is mapped to a pair of agents, a local agent and

a social agent. These agents implement the behavior of the

robot when interacting with the environment (local behavior),

and with the other robots (social behavior). The third type

of agent, graphical user interface (GUI) agent, is used by

human operators to interact with the swarm.

The proposed multi-agent architecture is designed to be

scalable, so, adding a robot to the swarm corresponds to

adding a new pair of agents (local and social) to the dis-

tributed control system. It is also designed to be modular

and extensible as new functionalities can be added to the

agents. Fault tolerance is achieved by the fact that disabled

robots won’t cause the system’s failure and by a self-healing

mechanism described in Section IV.

The proposed architecture is a hybrid one as it has both

a reactive component and a hierarchical structure (Fig. 2).

The reactive behavior, defined by the local agent, is given

by the interaction with the environment (for example object

avoidance, target detection) and by the commands received
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Fig. 1. Chidori multi-agent control arhitecture and human-swarm interface – the pair of agents corresponding to the k-th robot and the GUI agent which
has only one instance in the multi-agent system

from the corresponding social agent. Social interaction be-

tween robots is the key component in a swarm which allows

solving problems and generates the emergent behavior of

the swarm. This social interaction generates a hierarchical

structure in the swarm. Two types of groups of robots

were defined in order to model the swarm hierarchy: sub-

swarms and neighborhoods (Fig. 2). Sub-swarms are groups

of robots in the swarm which try to achieve different goals.

For example, sub-swarm 2 may search for a target, while sub-

swarm 6 transports an object or searches for another target,

see Fig. 2. Sub-swarms themselves are composed of one or

more neighborhoods. Neighborhoods belonging to the same

sub-swarm are smaller groups of robots which help each

other in achieving the common goal of the sub-swarm. For

example, when searching for a target, the robots may group

themselves in neighborhoods in order to help each other pass

local minima and reach the target’s location (neighborhoods

3, 4, and 5 in Fig. 2). Another example is the transportation

of an object by groups of robots which are formed in order to

carry and balance it )neighborhoods 7, 8, 9, and 10 in Fig. 2).

Each robot belongs to one and only one neighborhood and

therefore to one and only one sub-swarm. The swarm has a

dynamic hierarchical structure due to the changes in the goal

list, to the available robots and to other factors.

Another important aspect addressed by the proposed archi-

tecture is the problem of interfacing human operators with

a robotic swarm. This type of interface must be scalable

with the number of robots in the swarm, flexible in order

to be efficient when the structure of the swarm changes,

extensible and expressive in order to allow the user to add,

change or remove the swarm’s goals. The operator cannot

and should not control each robot in the swarm and therefore

the interface must offer easy and accessible ways to guide

the swarm and to display the swarm’s state in a relevant

and expressive way. The emergent intelligent behavior of

the multi-robot system must not be limited by the operator.

Guidance is used to help the swarm achieve its goals. For

example, the human expert may have information about

dangerous or interesting areas in the search space of a

mission. A technique to define, represent and transmit such

knowledge to the swarm is proposed in Section III.

B. Local Agent

The local agent is responsible for the individual behavior

of a robot. Because it interacts directly with the hardware,

the local agent is specific for each type of robot. It can be

implemented both for simulated and real robots. The only

requirement is that the robot, real or simulated, must have

a minimum set of sensors and actuators to implement its

functionalities. The required set of hardware resources is

composed of:

• proximity sensors, used for obstacle avoidance (exam-

ple: infrared, ultrasonic, laser range finder);

• localization sensors (example: encoders, GPS);

• target detection sensors (example: microphone, infrared,

camera);

• robot detection sensors, used for avoiding other robots

and for localization correction (example: infrared);

• motors for movement (differential wheeled type, rover

type, legged type).

Some hardware may be used for more than one functionality.

The local agent’s functionalities are implemented in three

modules: Movement and obstacle avoidance module, Local-

ization module and Target detection and real fitness compu-
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Fig. 2. The hierarchical structure of Chidori.Border 1 encloses the whole
swarm in which two sub-swarms have formed, delimited by borders 2 and
6. In each sub-swarm a number of neighborhoods can be noticed (the light
gray borders 3, 4, 5 in the first sub-swarm and the light gray borders 7, 8,
9, 10 in the second sub-swarm)

tation module, as shown in Fig. 1. Implementation details

are presented in Section IV.

C. Social Agent

The social agent defines the interaction between robots

and implements the distributed control system. It gener-

ates commands for its corresponding local agent, based

on the goals of the robot’s neighborhood and sub-swarm.

All functionalities offered by this agent use the inter-agent

communication and are not dependent on the robot type. The

social agent’s implementation is structured in six modules

divided in two classes: three low-level modules and three

high-level modules.

1) Low-level modules: PSO module, PSO parameter ad-

justment module and Localization correction module. The

PSO module uses a distributed Particle Swarm Optimization

(PSO) inspired algorithm to generate the next position of

the robot which is sent to the corresponding local agent.

The control algorithm uses the current location of the robot

obtained from the local agent and the fitness value computed

based on the neighborhood’s goals. The PSO parameters

can be adjusted in order to fine tune its performance (PSO

parameter adjustment module). In order to maintain the

algorithm’s performance the Localization correction module

was developed to generate correction values for the robot’s

position, based on physical interaction with other robots.

Negotiation is employed to compute the positioning error

correction of the involved robots.

2) High-level modules: Neighborhoods management

module, Fitness computation module and Self-healing mod-

ule. The Neighborhoods management module (NM) is re-

sponsible for allocating the swarm’s resources, different

types of robots, to sub-swarms and neighborhoods. This

resource planning operation is done according to the expert’s

goals and preferences. The preferences may include goals’

priorities, the number and type of robots allocated to the

goals, but are only taken in consideration as suggestions.

The configuration of the swarm’s structure is generated

by the distributed NM module. Goals are defined by the

operator (external goals) and by the swarm (internal goals).

NM assigns these goals to the sub-swarms which are then

transformed into fitness values by the Fitness computation

module. When searching for targets, fitness computation also

uses data received from the Target detection and real fitness

computation module. Because of limited target detection

ranges, the operator estimates the position of the target

and guides the swarm. When the target is detected, the

estimations are replaced by the real position of the target. The

proposed method used to allow the expert to guide the swarm

is the Gravity Points Method (GPM) which is described in

detail in Sect. III. The swarm’s internal goals are defined by

the Self-healing module. A robot that needs help (for example

when stuck in a hole) has to make other robots aware of its

state so they can come and help. This can be accomplished

by generating an internal goal for the swarm, thus the robot

which needs help becomes a target.

D. GUI Agent

The interface between the swarm and the human oper-

ator is implemented in the GUI agent. There is only one

instance of this agent in the multi-agent system which is

responsible for offering graphical tools for goal definition by

using the GPM method (see Section III) and swarm’s state

visualization. The operator uses the interface to guide and

monitor the swarm in order to complete the mission. These

functionalities are implemented in three modules: Graphical

definition of objectives module, Conversion and transfer

module and Monitoring service module. The Conversion and

transfer module converts objectives from a graphical format

into a numerical one which is understood by the swarm.

The Monitoring service module displays the state of a robot,

a group of robots or the entire swarm, in an useful and

expressive way for the operator.

III. CHIDORI IMPLEMENTATION TECHNIQUES

The proposed architecture is implemented around two

important techniques: Particle Swarm Optimization (PSO)

and Gravity Points Method (GPM). Although the Chidori

architecture is designed to be general as it does not depend

on a certain implementation or techniques, the two proposed

methods are used in the implementation because they can be

easily integrated together in the system.

A. Particle Swarm Optimization (PSO)

An adapted distributed PSO inspired algorithm is used in

the implementation of the swarm control system. PSO is a
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global stochastic optimization method inspired by the social

behavior of bird flocks, fish schools and insect societies. It is

a population based algorithm developed by J. Kennedy and

R. Eberhart [7]. The individuals in the swarm are named

particles which fly through the search space of the problem

in order to find the global optimum. The solution can be

represented as points in a multi-dimensional search space

and it defines the fitness function that is optimized. The

PSO algorithm is based on the interaction between particles

which form neighborhoods in order to pass local optima.

Each particle has three parameters: velocity, position and

local optimum. The velocity is computed as follows:

vi(k + 1) = w ∗ vi(k) + r1 ∗ c1 ∗ (p(k)− xi(k))

+r2 ∗ c2 ∗ (n(k)− xi(k))

+r3 ∗ c3 ∗ (g(k)− xi(k)) (1)

xi(k + 1) = xi(k) + vi(k + 1)

xi, vi, p, n, g ∈ Rn

where n is the dimension of the search space, vi and xi are

the i-th particle’s velocity and position, p, n and g are the

local, neighborhood and global optima, w is the particle’s

inertia, c1, c2, c3 are the learning factors corresponding to

the local, neighborhood and global component, r1, r2, r3 are

random variables uniformly distributed in [0, 1].

It is shown in [7] that grouping particles in neighborhoods

increases the PSO algorithm’s search power, but lowers its

convergence speed. Because of this property sub-swarms

and neighborhoods are defined in the Chidori architecture

in order to increase the chance of finding the target. The

components of the PSO algorithm (global, neighborhood,

local) are mapped to a sub-swarm, the sub-swarm’s neigh-

borhoods and the corresponding robots. Sub-swarms are

working independently to achieve different goals, having

different instances of the PSO algorithm. Each robot in a sub-

swarm has a corresponding particle used in the distributed

PSO instance of its sub-swarm.

The adapted PSO-inspired algorithm is implemented in

a distributed way. This property raises the problems of

communication and synchronization of the control algorithm.

The number of neighborhoods of a sub-swarm determines

the amount of communication used for negotiation of the

neighborhoods’ optima and the global optimum. In each

neighborhood a robot (negotiator) is designated to negoti-

ate the global optimum with the other neighborhoods and

broadcast it to the robots in its neighborhood. The process

of selecting a negotiator is fault tolerant because it can use

any of the available robots from the neighborhood and the

negotiator can be dynamically changed in any moment of

the sub-swarm’s mission. Therefore, when the negotiator

robot becomes disabled, another robot will take its place.

The implementation of this mechanism is discussed in Sec-

tion IV. Designing a distributed PSO algorithm must take

into account the difference between abstract particles and real

robots which have physical properties like mass, dimension,

orientation and are subject to the physical laws [3].

B. Gravity Points Method (GPM)

GPM is an original method proposed by the authors which

is used for representing goals. This representation is used

to implement the Human-Swarm Interface. The method is

used both for defining goals in a graphical manner and then

transforming them into a numerical format understandable by

the swarm, and for defining multi-purpose fitness functions

used by the PSO algorithm.

Goals can be either external, given by the human expert

through the GUI agent, or internal, generated by the swarm

using the self-healing mechanism. In GPM, goals are rep-

resented as virtual attractive and repulsive points. Virtual

attractive points are used to mark interesting areas or to

estimate a target position. They can also be used by the

swarm to mark the position of a robot that needs help.

On the other hand, repulsive points are used to indicate

uninteresting or hazardous areas. This method is used only

to guide the swarm and must not be used to control the

robots. It is not a planning method like other potential field

techniques [8] because the swarm’s movement is determined

by the PSO algorithm. Therefore the operator needs to define

only position estimates of a target in a search mission and

not routes defined by check points. The PSO algorithm

is a powerful stochastic search technique which is able to

autonomously search the areas around virtual points in order

to detect real targets. This emergent behavior should not be

limited by the operator.

Real targets cannot always be perceived by sensors be-

cause of their limited target detection ranges (Fig. 3). In

this case, an operator can only estimate the target’s position

using knowledge and previous experience. When the target

is detected, the virtual points are replaced by the position of

the real target.

The swarm uses the GPM method to compute the fitness

function. Attractive points contribute to the optimum of the

fitness function, while the repulsive points have a negative

contribution. The fitness function can be defined in many

ways, a simple form being the following:

F (x) =
∑

a∈APS

f(x, a)−
∑

r∈RPS

f(x, r) (2)

where F is the fitness function, x is the current position of a

robot, f is the contribution function of x and an attractive or

repulsive point, which may depend on the distance between

them, APS and RPS are the sets of attractive and repulsive

points in the sub-swarm S. The contribution function, f , can

be chosen as f(x, p) = G(‖x− p‖), where G is the Gaussian

function and p is either an attractive point, a, or a repulsive

point, r. The parameters of the Gaussian function can be

used to shape and fine tune the potential field generated by

an attrative or repulsive point. The fitness function, F , is

maximized by the PSO algorithm. The robots, which are in

fact the particles, try to get to the attractive points while

avoiding the repulsive ones.

The GPM technique is a global method for interacting with

the swarm. As far as the authors know, other research groups

have treated different aspects of human-swarm interfacing.
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Fig. 3. Operator guided search for a target while avoiding hazardous areas

One approach uses visual and acoustic signals to express

the swarm’s state in order to develop an infrastructure

for programming and debugging swarm applications [9].

Another approach uses a local method to interface with a

swarm which implements PSO as a control algorithm [10].

The user controls an avatar which is a virtual instance of a

robot. The other robots consider the user-controlled avatar as

being one of them. The operator tries to use the avatar to find

the target helping the other robots in their search. The PSO

uses the fitness values computed for the avatar to determine

the global optimum. The proposed architecture differs from

the first approach which is focused on swarm applications

development and debugging and from the second approach

which uses a robot control method to help the swarm.

IV. SOFTWARE IMPLEMENTATION OF CHIDORI

ARCHITECTURE

The multi-agent control system is implemented in Java,

based on the Java Agent DEvelopment Framework, JADE.

The JADE software platform is used in Chidori implementa-

tion because it offers an inter-agent communication interface,

an API for creating the agents and defining their behaviors

and a run-time platform for agent based applications.

The main architectural elements of the JADE platform

are agents and containers. JADE agents are implemented

as threads and run in containers which are Java processes.

Containers offer agent hosting and execution services. There

is a special container named Main Container which is the

first container created in the platform initiation operation. All

the other containers must register to the Main Container. The

Main Container manages the containers table, the agents’

descriptor table and two special agents: agent management

service (AMS) and yellow pages service (DF). JADE has

a special mechanism to replicate the Main Container in

order to make the multi-agent application fault-tolerant. The

replication mechanism which is not active by default is

enabled in Chidori implementation.

Inter-agent communication is based on ontologies and

semantic languages. Semantic languages are used to repre-

sent knowledge in a platform independent way. Ontologies

represent the common vocabulary used by the agents and

they are used to define the concepts, predicates and agent-

actions, belonging to a specific domain. JADE agents com-

municate knowledge by using the Content Manager class

which transforms Java objects into a semantic language

(SL, Leap or XML) based on the registered ontology. More

details about JADE framework can be found in [11]. The

ontology used by Chidori agents is defined using the Protégé

framework.

The functionalities of the three agents defined in the

proposed multi-agent system, LocalAgent, SocialAgent and

GUIAgent, are implemented as behaviors. Behaviors con-

tain the code which is executed by the JADE agent. Four

behaviors were registered in the LocalAgent. The first one

is an update behavior which is executed periodically in

order to exchange data between the robot and its model.

The robot model is a data structure which is used to store

sensor data and commands which are sent to the robot. The

other three behaviors are the movement behavior which is

responsible for moving the robot to a given location and

avoiding obstacles, localization behavior which is responsible

for computing the location of the robot based on odometry

and detecting other robots, and the target detection behavior

which is used to compute a fitness value based on sensor

data received from the real target. Infrared sensors are used

both for obstacle avoidance and for other robots detection

and recognition. Motor encoders are used for localization

and microphones, for the target detection.

SocialAgent uses three behaviors, PSO behavior which

implements fitness computation, parameters’ adjustment and

particles’ positions computation, NM behavior which is

responsible for managing the sub-swarms and their neigh-

borhoods and also for the self-healing mechanism, and

the localization correction behavior which uses data from
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encountered robots to correct their position. The self-healing

mechanism is integrated in the NM behavior because both

internal and external goals are processed in the same way.

GUIAgent offers two services implemented in two behav-

iors. The first behavior is the monitoring service behavior

which is designed to retrieve and visualize the state of the

swarm at four levels: robot level, neighborhood level, sub-

swarm level and swarm level. The second behavior is the

graphical user input interface which uses the GPM method

to define goals as virtual attractive and repulsive points in

a graphical manner. It is also responsible for transforming

the goals into a numerical format and transmitting them to

the swarm using the JADE communication interface (Fig. 1).

GUI is developed using JavaFX technology which is easy to

use and integrate with Java based applications.

Webots simulator is used for fast development and de-

bugging of the implementation. It is a professional robotics

simulator which offers various models for robots, sensors

and actuators. Webots was interfaced with the local agents

using a custom TCP/IP protocol. The simulator also offers

the possibility of sending commands directly to real robots

instead of the simulated ones. This is a very useful feature

because no source code must be created or changed in order

to test the implementation on the real robots.

V. SIMULATION RESULTS

Chidori architecture was implemented as a multi-agent

system based on JADE Framework. The implementation was

tested on simulated e-puck robots (7cm diameter) in the

Webots 6 simulation environment. The experiments were

conducted in a flat rectangular arena (3x2.1m size) as

shown in Fig. 4. The tests prove that the local agent’s

functionalities, movement, obstacle avoidance and odometric

localization, are working properly together with the PSO

control algorithm implemented in the social agent. A JavaFX

script was also successfully interfaced with the GUIAgent.

The communication between agents, Webots and real e-puck

robots was also tested and is well functioning.

Fig. 4. Swarm of robots searching for a target (black point in the center
of the arena)

In all the simulated tests, the robots were able to find a

given virtual attractive point, marked as a black circle in

the center of the arena (Fig. 4). The chart in Fig. 4 shows

the average execution time and standard deviation in an

arena with and without objects. The average time to find

the virtual point is 92s for the arena without objects and

99s for the arena with obstacles. The robots were initially

scattered randomly near the arena’s boundaries. Fig. 4 shows

the final configuration of 5 e-puck robots which converged

to the virtual attractive point. The experimental results are

promising and are used to guide further development of the

Chidori implementation and test cases design on real robots.

VI. CONCLUSIONS AND FUTURE WORK

An integrated multi-robot control architecture was pro-

posed. together with a human-swarm interface. The imple-

mentation of the multi-agent system and preliminary test

results were discussed. The authors proved that the proposed

architecture can be used to develop swarm applications.

Further work includes improvements of the local and

social behaviors. Also, the graphical component will be

further developed to achieve the presented requirements.

New experiments are being designed and conducted in

order to test and validate the architecture and the human-

swarm interface. This will include test cases using both

simulated and real robots.
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