
On the Power of Enzymatic Numerical P

Systems

Cristian Ioan Vasile1, Ana Brânduşa Pavel1, Ioan Dumitrache1, and Gheorghe
Păun2,3

1 Department of Automatic Control and Systems Engineering
Politehnica University of Bucharest

Splaiul Independenţei 313, 060042 Bucharest, Romania
{cvasile, apavel, idumitrache}@ics.pub.ro

2 Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucharest, Romania

george.paun@imar.ro
3 Research Group on Natural Computing

Department of Computer Science and Artificial Intelligence
University of Sevilla

Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
gpaun@us.es

Abstract. The main result of the paper is the proof that Enzymatic
Numerical P Sytems with deterministic, but parallel, execution model
are universal, even when the production functions used are polynomials
of degree 1. This extends previous known results and provides the optimal
case in terms of polynomial degree.

Keywords: Membrane computing, Numerical P Systems, Enzymatic
Numerical P Systems, Turing universality

1 The main result

The main result of the paper is the following theorem about the power of EN
P Systems. The theorem extends previous results about the benefits of adding
the enzymatic mechanism in terms of the computational power of the model. It
also provides the optimal result regarding the polynomial degree of the produc-
tions functions, namely 1. The execution model considered in the theorem is a
deterministic, but parallel one, in which all active rules are executed in paral-
lel. Rules, which share variables, will use the current value of the variable and
execute independently of each other.

Theorem 1. NRE = NP4(poly
1(6), enz, allP, det).

Proof. The proof is as always done by constructing a membrane system which
enumerates the positive values of some polynomial with integer coeficients cor-
responding to tuples of natural numbers. It is proven in [1], that polynomials
of degree at most 5 with 5 variables are suficient to imply the universality of

2 Vasile et al.

the models. This technique is employed to show that standard NP Systems are
universal [2]. The following system is a modified version of the one used in [3]
(it is also shown in graphical form in figure 1):

Π = (4, H, µ, (V arGenerate, P rGenerate, V arGenerate(0))

(V arCompute, P rCompute, V arCompute(0), enum),

(V arPow5, P rPow5, V arPow5(0)),

(V arMult, P rMult, V arMult(0))),

H = {Generate, Compute, Pow5,Mult},

µ = [
Generate

[
Compute

[
Pow5

[
Mult

]
Mult

]
Pow5

]
Compute

]
Generate

,

V arGenerate = {xi, ej , ezk, eri, n, et, g, gc : 1 ≤ i ≤ 5, 1 ≤ i ≤ 7, 1 ≤ k ≤ 5},

P rGenerate = {n → 1|n, et → 1|gc,

1 + x1|e1 → 1|er1, −1 + g|e1 → 1|x1, 1 + n+ x1|e1 → 1|x1}

∪ {j · ej → 1|ej+1 + (j − 1)|et : 1 ≤ j ≤ 5}

∪ {1 + xi|e1 → 1|ezi, 1− i+ et|eri−1
→ 1|xi : 2 ≤ i ≤ 5}

∪ {g + (ezi + eri−1)|ei → 1|eri, 2− i+ n+ et|eri → 1|xi

: 2 ≤ i ≤ 5}

∪ {2 + et|er5 →

5∑

i=1

1|xi + 1|n, er5|e6 → 1|gc, e6 → 1|e7,

e7 → 1|ec1}

∪ {g + 2 · xi|e7 → 1|xi + 1|xc
i : 1 ≤ i ≤ 5},

V arGenerate(0) = (5, 5, 5, 5, 5, 1, 0, . . . , 0, 5, 0, 0, 0),

V arCompute = {xc
i , e

c
j , t, g

∗, ept, fQ, enum, aux, ef : 1 ≤ i ≤ 5, 1 ≤ j ≤ 506},

P rCompute = {g∗ +

(
5∑

i=1

ai,k · xc
i + a6,k

)

|ec
2k−1

→ 1|s1,

3 · ec2k−1 → 1|ec2k + 2|ep1, ec2k|ept
→ 1|ec2k+1,

g∗ − 2 · βkt|ec
2k+1

→ 1|aux+ 1|ef : 1 ≤ k ≤ 252}

∪ {2 · ec505 → 1|ef + 1|ec506, aux|ef → 1|fQ, −fQ|g∗ → 1|enum,

−(fQ + ec506) → 1|ef , enum+ fQ + ept → 1|gc, ec506 → 1|e1}

V arCompute(0) = (0, 0, . . . , 0),

V arPow5 = {s1, s2, epi, eM , gc∗, z : 1 ≤ i ≤ 7},

P rPow5 = {z + 3 · s1|ep1
→ 1|a+ 1|b+ 1|s1, z + 2 · s2|ep3

→ 1|a+ 1|b,

z + s1|ep5
→ 1|a, z + s2|ep5

→ 1|b, z + s2|ep7
→ 1|t,

ep7 → 1|ept, eM → 1|gc∗}

∪ {3 · ep2k−1 → 1|ep2k + 2|es, ep2k|eM → 1|ep2k+1, 1 ≤ k ≤ 3}

V arPow5(0) = (0, 0, . . . , 0),

On the Power of Enzymatic Numerical P Systems 3

V arMult = {a, b, z∗, d, u, es},

P rMult = {z∗ + 1.5 · a|b → 2|a+ 1|s2, z∗ − (1 + d)|b → 1|d, d → 1|b

es + b|u → 1|eM , a+ b|u → 1|gc∗}

V arMult(0) = (0, 0, 0, 0, 1, 0).

The system is composed of the 5-tuple generation part and the computation
of the polynomial’s value. The generating part, implemented in the Generate

membrane, is the same as in the proof from [3]. Only the last rule of the mem-
brane, e7 → 1|ec1, was changed in order to sychronize it with the Computation

membrane. The 5-tuple generation process is described in detail in [3]. The five
variables forming the tuple are regarded as a single number with 5 digits in
a certain base. The algorithm counts down from the highest 5-digit number to
zero. Therefore, if the cuurent base is b+1, the membrane will generate the num-
bers from bbbbb to 00000. When the null tuple is reached the variables are reset
to the highest 5-digit number of the next base. The algorithm start from with
base 6 from the tuple (5, 5, 5, 5, 5) and generates (5, 5, 5, 5, 4), . . . , (5, 5, 5, 5, 0),
(5, 5, 5, 4, 5), . . . , (0, 0, 0, 0, 0). At this point it will move to the tuple (6, 6, 6, 6, 6)
which corresponds to the highest 5-digit number in base 7. The process repeats
indefinetly, thus generating all 5-tuples of natural numbers in a deterministic
way.

For the next part of the argument it is important to recall that every poly-
nomial f of degree 5 with 5 variables can be put in the following form (lemma
from [3]):

f(x1, . . . , x5) =
m∑

i=1

βi · (a1,ix1 + . . .+ a5,ix5 + a6,i)
5 (1)

where m is 252 and represents the maximum number of terms of f in the general
form, βi are polynomial specific coefficients and aj,i are some constants. This
form of the polynomial is used in order to compute the values corresponding
to the generated 5-tuples in the first part of the procedure in the Generate

membrane.
The second part of system, the computational part, was rewritten such that

only polynomials of degree one are used as production functions. This is achieved
by noting that the only part where polynomials of degree greater than one are
needed is when taking the 5-th power of a number, more specifically a natural
number [3]. Taking the power of a number can be done using only multiplication;
computing the 5-th power of x can be done by first computing a = x·x = x2, then
b = a·a = x4 and finally c = x·b = x5. Since x in the system is a natural number,
multiplication can be performed as a repeated addition, a · b = a+ . . .+ a

︸ ︷︷ ︸

b

. This

procedure is implemented in the Pow5 membrane which repeatedly uses the
Mult membrane to compute the products of natural numbers. Thus the degree
of the polynomials in productions all production functions is reduced to 1, the
optimal value.

4 Vasile et al.'

&

$

%

Generate

xi[5], 1 ≤ i ≤ 5, e1[1], ej [0], 2 ≤ j ≤ 7, ezk[0], 1 ≤ k ≤ 5, eri[0], 1 ≤ i ≤ 5

n[5], et[0], g[0], gc[0]

n → 1|n

et → 1|gc

1 + xi|e1 → 1|ezi, 2 ≤ i ≤ 5

1 + x1|e1 → 1|er1
−1 + g|e1 → 1|x1

1 + n+ x1|e1 → 1|x1

j · ej → 1|ej+1 + (j − 1)|et, 1 ≤ j ≤ 5

1− i+ et|eri−1
→ 1|xi, 1 ≤ i ≤ 5

g + (ezi + eri−1)|ei → 1|eri, 2 ≤ i ≤ 5

2− i+ n+ et|eri → 1|xi, 2 ≤ i ≤ 5

2 + et|er5 →
∑

5

i=1
1|xi + 1|n

er5|e6 → 1|gc

e6 → 1|e7
g + 2 · xi|e7 → 1|xi + 1|xc

i , 1 ≤ i ≤ 5

e7 → 1|ec1

'

&

$

%

Compute

xc
i [0], 1 ≤ i ≤ 5,

ecj [0], 1 ≤ j ≤ 506,

t[0], g∗[0], ept[0], fQ[0],

enum[0], aux[0], ef [0]

g∗ +
∑

5

i=1
ai,k · xc

i + a6,k|ec
2k−1

→ 1|s1

3 · ec2k−1 → 1|ec2k + 2|ep1

ec2k|ept → 1|ec2k+1

g∗ − 2 · βkt|ec
2k+1

→ 1|aux+ 1|ef

1 ≤ k ≤ 252
2 · ec505 → 1|ef + 1|ec506
aux|ef → 1|fQ

−fQ|g∗ → 1|enum

−(fQ + ec506) → 1|ef
enum+ fQ + ept → 1|gc

ec506 → 1|e1

'

&

$

%

Pow5

s1[0], s2[0], epi[0], 1 ≤ i ≤ 7,

eM [0], gc∗[0], z[0]

z + 3 · s1|ep1 → 1|a+ 1|b+ 1|s1
z + 2 · s2|ep3 → 1|a+ 1|b

z + s1|ep5 → 1|a

z + s2|ep5 → 1|b

3 · ep2k−1 → 1|ep2k + 2|es
ep2k|eM → 1|ep2k+1

1 ≤ k ≤ 3
z + s2|ep7 → 1|t

ep7 → 1|ept
eM → 1|gc∗'

&

$

%

Mult

a[0], b[0], z∗[0], d[0], u[1], es[0]

z∗ + 1.5 · a|b → 2|a+ 1|s2
z∗ − (1 + d)|b → 1|d

d → 1|b

es + b|u → 1|eM
a+ b|u → 1|gc∗

Fig. 1. The EN P system from the proof of Theorem 1

Also, the number of membranes needed in the computation was reduced
by reusing some membranes, Pow5 and Mult. Instead of using m = 252 Pow5

On the Power of Enzymatic Numerical P Systems 5

membranes in order to compute the m terms of the polynomial (in the form from
equation 1), the membrane is used repeatedly to compute each term. Therefore,
the number of membranes is reduced to 4. ⊓⊔

2 Remarks

In the proof of theorem 1 a method of reusing membranes was used in order
to reduce the number of membranes in the system. It is, however, important to
notice that it also constrained the system to perform most important computa-
tions in a serial manner. In practice, it may be more convinient to have more
membranes that compute in parallel, because it allows the underlying runtime
environment to performe optimizations based on available hardware and soft-
ware platform. It is also important to note that there are more rules dedicated
to program control flow in the membrane system from theorem 1 than there
are in the one from theorem 4 in [3]. Another important observation is that
even though computation can be done with polynomial production functions of
degree 1, in some cases it is more convenient to use higher degree polynomials.
However, most rules used for porgram flow control are of degree 1 and also, most
rules with higher degree polynomial productions fucntions have few terms. These
observations can be used in order to optimize the data structures and algorithms
employed in simulating EN P Systems.

Acknowledgments.

This paper is suported by the Sectorial Operational Programme Human Re-
sources Development, financed from the European Social Fund and by the Ro-
manian Government under the contract number SOP HRD/107/1.5/S/82514.

References

1. Minsky, M. (ed.): Computation: Finite and Infinite Machines. Prentice-Hall (1967)
2. Paun, G., Paun, A.: Membrane Computing and Economics: Numerical P Systems.

Fundamenta Informaticae pp. 213–227 (2004)
3. Vasile, C.I., Pavel, A.B., Dumitrache, I., P˘ aun, G.: On the Power of Enzymatic

Numerical P Systems. Acta Informatica (submitted)

